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1 Introduction

In the first week of this module we established the importance of having a solid understanding of
open channel hydrodynamics – it underpins the study of other topics covered in this module (i.e.
transport of pollutants and sediment). Now, open channel flow (e.g. a river) is, after all, a fluid
flow. As such, it must have some similarities with, say, air flow through a fan or oceanic currents.
However, if you have taken introductory Fluid Mechanics (or Thermofluids) and Hydraulics, these
similarities may not be obvious to you. The first goal of these notes is to convince you that all fluids
have certain commonalities, a common ‘ancestor’ theory from which concepts such as Bernoulli’s
equation or the Shallow Water Equations (which you will encounter later in these notes) may be
derived. This theory is the Navier-Stokes equations. From these equations, we will explore, step
by step, several simplifications that apply specifically to water flows in open channels. Another
reason to do this – and the second goal of these notes – is to study several aspects of hydrodynamics
which are often overlooked in introductory hydraulics without major consequences, but that become
crucial when trying to understand environmental hydraulics, such as turbulence and its effect on
the flow velocity profile and the transport of sediment and pollutants.

Starting from the general and moving towards the particular, we will start by reviewing the Navier-
Stokes equations, then we will explore the great importance of turbulence (which is virtually always
present in open channel flows), and finally we will appreciate how the adoption of certain assump-
tions, based on experimentation, can permit significant simplification of the mathematical models
to be employed by the hydraulic engineer.

2 The fundamental hydrodynamic equations

Let us start by analysing what happens to a small element of incompressible fluid (i.e. for our
purposes, water). First of all, mass is conserved. As you know from previous courses, this leads to
the continuity equation:

∇·u =
∂ui
∂xi

=
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1)

where u = u(x, t) is the velocity vector with components ui=1,2,3 = (u1, u2, u3) = (u, v, w) in the
Cartesian frame of reference x = (x1, x2, x3) = (x, y, z), where x, y and z point in the streamwise,
transverse and vertical directions, respectively, as shown in fig. 1; and t denotes time1. Three
different notations, discussed during the first week of the module, have been employed in eq. (1).
We will change from one notation to another depending on convenience; for instance, in eq. (1)
the first notation clearly shows that mass in the element is conserved because the divergence of the
velocity field (∇·u) is zero, but the third notation may be more useful for algebraic purposes.

The element of water under consideration must also obey Newton’s second law, meaning that it
will experience an acceleration (Du/Dt) proportional to the sum of the forces acting on it. This
leads to the Navier-Stokes (NS) equations2, which govern, to the best of our knowledge, the motion

1Note that each component of u(x, t) also varies in time and space; i.e. ui = ui(x, y, z, t)
2Named after the 19th century scientists Claude-Louis Navier (France) and George Gabriel Stokes (University of

Cambridge).
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Figure 1: Sketch of an open channel flow (a river reach), showing the coordinate system adopted. The
Navier-Stokes equations apply to a small element of fluid located anywhere in this reach (for instance, the
point where the velocity vectors in the figure coincide) at any instance in time. [Taken from Jansen, P. P.
Principles of River Engineering: the Non-Tidal Alluvial River. Delftse Uitgevers Maatschappij, 1994.]

of all fluids. The Navier-Stokes equations are (for incompressible flow):

Du

Dt
=
∂u

∂t
+ (u·∇)u︸ ︷︷ ︸

acceleration

= g − 1

ρ
∇p+ ν∇2u︸ ︷︷ ︸

forces (per mass)

. (2)

Let us take some time to examine this very important equation. On the left-most side of the
equation, we have the total acceleration of the element, Du/Dt, which is the actual acceleration
that our element experiences. However, it is often convenient to write the total acceleration, in
analogy with transport phenomena3 (in this case, the property being transported is momentum), as
being conformed by a local acceleration, ∂u/∂t, and a convective acceleration, (u·∇)u. The former
is only zero when considering steady flows. The latter has to do with the element of water moving
to a different zone within the flow field where velocity may be different, and thus the convective
term may be non-zero even in steady flows4, but vanishes under uniform flow conditions5. Since
eq. (2) follows from Newton’s second law, the right-most side of the equation naturally represents
forces (per unit mass of the element under consideration). These forces can in turn be divided into
two types: volume and surface forces. Volume forces act on the element of water itself and are of
external origin. For our purposes, we will solely deal with the volume force caused on the element by
the gravitational field, so g is the gravitational acceleration of magnitude g acting downwards; i.e.
g = (0, 0,−g). Surface forces, on the other hand, act (obviously) on the surface of the element, and
are caused by the fluid itself. The first force of this type has to do with the gradient of the pressure
(−∇p/ρ), whereas the second one (ν∇2u) relates to the fluid’s dynamic viscosity, µ (an intrinsic
property of the fluid), via the kinematic viscosity ν ≡ µ/ρ, and is often neglected in introductory
hydraulics under the assumption of inviscid flow – however, this term becomes important in the
current context and we will be studying it further.

Complementary material: Many concepts have been introduced here, so complementary videos
may be helpful. To this end, I invite you to stop here and watch the following 2-parts tutorial
produced by a past UoS MEng student: https://youtu.be/ORhtfTH2E3Y and https://youtu.

be/vszxLH-fUuI. These videos explain the Navier-Stokes equations both from an intuitive (Part
I) and mathematical (Part II) perspectives.

3Transport phenomena will be covered in more detail later in the module.
4Consider steady flow through a nozzle. As an element of fluid passes through the nozzle, it will accelerate to

conserve mass. In this case, local acceleration is zero (steady flow), so all acceleration must come from the convective
term.

5Q: Why?
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Together, eqs. (1) and (2) represent a set of four differential equations for the four unknowns: u, v,
w and p. However, even though current computational resources do allow us to solve directly these
equations for some cases6, engineering problems are typically very complex due to large spatial and
temporal scales (e.g. circulation in an estuary), which demands simplification of the NS equations
in order to render them practical7. In the next sections, we explore certain simplifications of the
NS equations for the particular problems that the hydraulic engineer is expected to face. But
before that, we will talk about a very relevant topic commonly (almost always) encountered in
environmental water flows: turbulence.

Problem: As you know well, in fluids at rest (i.e. hydrostatics): (i) pressure varies linearly with
the vertical distance from the surface; and (ii) for a given vertical position, pressure does not vary

in the horizontal plane. Show how these two facts can be recovered from eq. (2).

3 Introduction to turbulence

Complementary material: I encourage you to watch the following video on turbulence before
and after you read this section: https://youtu.be/AeBsiEYWZUY

3.1 Context

Turbulence is one of those concepts that are perhaps better grasped by the beginner using intuition
rather than rigid definition. If asked what is turbulence? your response may at some point include
the word chaotic, or a synonym (erratic, unpredictable, disorderly, etc.), in which case, you would
be at least partially correct. Turbulent flows are characterised by significant and irregular spatial
and temporal variations of the velocity and pressure fields (see black, continuous line in fig. 2).
Terms ‘chaotic’ or ‘random’, however, do not do full justice to turbulent flows, which typically
present an easy-to-identify pattern8: vortices (or eddies), which are responsible for mixing and
transporting properties within the fluid. The latter is another important signature of turbulent
flows: an enhanced ability to mix and transport. You are well aware of this when pouring milk into
your tea - it will mix better and faster if you stir (induce turbulence). Note, however, that properties
being mixed and transported are not always visible (like milk in your tea). Mixing of momentum
and heat (both invisible to the eye), for example, are of tremendous importance in many fields of
engineering and science. Another feature of turbulent flows, which is of particular significance to
the hydraulic engineer, is that they are very effective at dissipating energy9. The mechanism of
energy dissipation in turbulent flows involves the breaking of intrinsically unstable large eddies into

6This is called Direct Numerical Simulations, which are highly demanding from a computational perspective.
7However, note that computational power is not the only barrier to achieve Direct Numerical Simulations, but

also e.g. accurate estimation of boundary conditions, numerical challenges and complexity associated with processing
large volumes of data.

8This is a key complicating feature of turbulent flows: the coexistence of randomness and patterns, which usually
do not go hand in hand. That being said, it is important to emphasise that from a strict statistical perspective,
turbulent flows really are a random process.

9Consider, for instance, the Moody chart at the transition region. For a similar Reynolds number, a turbulent
flow will dissipate more energy (higher friction factor) than a laminar one. Sometimes, the hydraulic engineer may
wish to minimise this energy dissipation (e.g. in pipes), but some other times this is a welcome property of turbulent
flows (e.g. in stilling basins).
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progressively smaller eddies, which are eventually dissipated (converted into heat) by molecular
viscosity. This process of energy dissipation is called energy cascade, and is well captured by
undoubtedly the most cited verses in turbulence literature; namely (by L. F. Richardson):

Big whirls have little whirls,
which feed on their velocity;
and little whirls have lesser whirls,
and so on to viscosity.

Figure 2: Plot showing the time series of the x-component of the flow velocity, u. Raw measurement in
black, and time averaged velocity 〈u〉 shown with red, dashed line. At any point in time, the vertical
distance between the two curves is the instantaneous fluctuation u′.

3.2 The Reynolds equations

With this context (and poem) in mind, let us proceed to a more mathematical treatment of tur-
bulence. To this end, we begin with the methodology proposed by the prominent British fluid
dynamicist Osborne Reynolds in the late 1800’s. After Reynolds, we can decompose the instanta-
neous velocity and pressure into their mean (denoted by the angle brackets, 〈·〉) and a fluctuation10

(denoted by the prime symbol, ′); namely,

u = 〈u〉+ u′ and p = 〈p〉+ p′, (3)

where the time-average operator 〈 〉, applied to any component of u or p, is defined as:

〈 〉 ≡ 1

∆t

∫ t+∆t

t
( )dt, (4)

and fluctuations satisfy the condition 〈u′〉 = 0 and 〈p′〉 = 0. See fig. 2.

Note: we carry out this decomposition in order to find the equations governing the evolution of
the mean variables, which are typically of more practical importance than instantaneous values.

10In other words, we are simply saying that u and p fluctuate instantaneously about their mean value. Hence, you
can also think of u′ as the instantaneous deviation from the mean: u′(t) = u(t)− 〈u〉 (the same goes for p).
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If you are an observant student, you may argue that the value of, say, 〈u1〉, will depend on the
selection of the averaging interval ∆t. This would be a correct argument, which, moreover, auto-
matically begs the question: what value of ∆t should be chosen? There is no absolute answer to
this, but in general, we want to set a ∆t that is large enough to eliminate (or filter out) short-lived
turbulent fluctuations, but small enough to retain important information such as variations on
the mean flow due to e.g. a flood wave11. A good sense for what the value of ∆t should be will
naturally depend on the particular problem. In typical river flows, for instance, we can anticipate
that ∆t will usually be of the order of minutes. The time-average operator 〈·〉 satisfies several rules;
namely:12

• It is a linear operator, such that for any two variables a and b (could be e.g. u1 and u3), and
a real constant α, we have 〈a+ b〉 = 〈a〉+ 〈b〉, and 〈αb〉 = α〈b〉.

• Time and spatial derivatives commute with this operator; in other words, 〈∂b/∂t〉 = ∂〈b〉/∂t,
and 〈∂b/∂xi〉 = ∂〈b〉/∂xi.

• Filtered quantities do not change with further filtering; i.e. 〈〈b〉〉 = 〈b〉.

• Also, 〈a〈b〉〉 = 〈a〉〈b〉.

Armed with 〈 〉 and the rules set above, as well as Reynolds decomposition (3), we can modify our
original governing equations (1) and (2) to give us the evolution of the mean (and not instantaneous)
quantities of interest (velocity components and pressure). For ease, let us start with the continuity
equation (1). Use of Reynolds decomposition yields

∇·u = ∇ · (〈u〉+ u′) = ∇ · 〈u〉+∇ · u′ = 0.

Now we apply 〈 〉 to the whole equation, obtaining

〈∇·u〉 = ∇ · 〈u〉 = ∇ · 〈〈u〉〉+∇ · 〈u′〉 = 0.

But we said before that 〈u′〉 = 0 and 〈〈u〉〉 = 〈u〉, so our continuity equation for the mean velocity
field is simply ∇ · 〈u〉 = 0, or using alternative notations:

∇ · 〈u〉 =
∂〈ui〉
∂xi

=
∂〈u〉
∂x

+
∂〈v〉
∂y

+
∂〈w〉
∂z

= 0, (5)

which is analogous to (1)13.

The momentum equations are, however, a more interesting matter. For convenience, let us rewrite
(2) using Einstein notation for the momentum in the j direction (j could be x, y or z):

∂uj
∂t

+ ui
∂uj
∂xi

= gj −
1

ρ

∂p

∂xj
+ ν

∂2uj
∂xi∂xi

, (6)

11For example, go to fig. 2 and sketch how the time-averaged signal (red line) would look like if we chose ∆t = 2.0

s. Also, what would you say is the approximate value of ∆t in the red signal shown?
12Verify all of these.
13Q: This means that both the instantaneous velocity field and the mean velocity field are divergence free. Can

you see why this should be so?
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which would be linear in uj and p if it were not for the convective acceleration term ui∂uj/∂xi.
That all other terms are linear means that they are easily transformed upon application of the
time-average operator; namely14:〈

∂uj
∂t

〉
=
∂〈uj〉
∂t

;

〈
∂p

∂xj

〉
=
∂〈p〉
∂xj

and

〈
∂2uj
∂xi∂xi

〉
=
∂2〈uj〉
∂xi∂xi

. (7)

But we will show that this is not the case for the convective acceleration ui∂uj/∂xi. We start by
writing ui∂uj/∂xi as ∂(uiuj)/∂xi (called the conservative form), which we can do because

∂(uiuj)/∂xi = ui∂uj/∂xi + uj∂ui/∂xi (chain rule),

and we know form (1) that ∂ui/∂xi = 0; hence:

ui∂uj/∂xi = ∂(uiuj)/∂xi.

Making use of Reynolds decomposition for ui and uj , and applying the operator 〈 〉 (recalling that
〈u′i〉 = 〈u′j〉 = 0), we have

〈uiuj〉 =
〈
(〈ui〉+ u′i)(〈uj〉+ u′j)

〉
=

〈
〈ui〉〈uj〉+ u′i〈uj〉+ u′j〈ui〉+ u′iu

′
j

〉
= 〈ui〉〈uj〉+ 〈u′iu′j〉, (8)

which allows us to write the convective acceleration as

∂〈uiuj〉
∂xi

=
∂〈ui〉〈uj〉
∂xi

+
∂〈u′iu′j〉
∂xi

= 〈ui〉
∂〈uj〉
∂xi

+
∂〈u′iu′j〉
∂xi

, (9)

where we have used the fact that ∂〈ui〉/∂xi = 0 (eq. 5). Note that a new term has arisen from
time-averaging of the convective acceleration (which is not true for the linear terms previously
discussed). To see this more clearly, let us compile what we have done so far to write an equation
for the mean momentum conservation in the j direction; namely:

∂〈uj〉
∂t

+ 〈ui〉
∂〈uj〉
∂xi

= gj −
1

ρ

∂〈p〉
∂xj

+ ν
∂2〈uj〉
∂xi∂xi

−
∂〈u′iu′j〉
∂xi︸ ︷︷ ︸

extra term

. (10)

This equation would be ‘identical’ to (6) if it were not for the last term in the right-hand side
(r.h.s.). In fact, this is a very important term that intimately relates to turbulence. The averaged
product 〈u′iu′j〉 (statistically speaking, a covariance) is called the Reynolds stress, and is central
to the study of turbulence. Here, we will only address Reynolds stresses and their implications
very briefly, but to the sufficient extent as to gain insight into important aspects of open channel
hydrodynamics. The equations derived here (eqs. 5 and 10) are commonly called the Reynolds-
Averaged Navier-Stokes (RANS) equations, or simply the Reynolds equations.

14Prove these equalities.

7



Practice: Taking the j direction as z (such that uj = w), eq. (6) can be written as:

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= g − 1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
.

Write in the same notation the x and y analogues of this equation. Then do the same for the three
components of eq. (10).

3.3 Reynolds stresses

As pointed out above, if it were not for the Reynolds stresses, the instantaneous and mean momen-
tum equations (eqs. 6 and 10, respectively) would be the same. So, what is the effect of Reynolds
stresses on the mean flow? To answer this, it is illuminating to rewrite (10) in a different form;
namely15:

ρ
D〈uj〉

Dt
= ρgj +

∂

∂xi

[
2µS̄ij − 〈p〉δij − ρ〈u′iu′j〉

]
, (11)

where δij is the Kronecker delta, defined as δij = 1 if i = j and δij = 0 if i 6= j (i.e. the identity
matrix16); and S̄ij is the mean rate of strain, defined as

S̄ij ≡
1

2

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
. (12)

Eq. (11) shows that the acceleration of a fluid element (left-hand side, or l.h.s. for short) is caused
by volume forces (in our case, gravity) and forces due to the gradient of different types of stresses
(i.e. ∂(...)/∂xi). The latter point is important. Let us focus on the term −∂〈p〉/∂xj , and consider
as illustration xj = y. If the mean pressure were uniform along y, it would not cause a net force
(it would cancel itself out) – only a change of the mean pressure along y would cause a net force
along this direction. Similarly, it is the gradient of viscous stresses (2µS̄ij) which causes net forces
on the surface of the fluid element. From a physical perspective, viscous stresses have their origin
in molecular dynamics. Without entering in detail, at the microscopic level molecules transport
momentum to surrounding parts of the fluid due to their random motion, thus serving as a source
of momentum diffusion. It is then easy to see that the apparent stress −ρ〈u′iu′j〉 will have a similar
effect, only that in this case it is the velocity field random fluctuations that are responsible
for the transport of momentum.

Now that we know that fluctuations in the mean velocity field will affect the mean momentum by
acting as an apparent additional stress, how do we quantify this stress?

3.4 The closure problem

Inspection of the equations we have derived for the mean flow, eqs. (5) and (10), should trigger an
alarm: we have more unknowns than equations. We have four equations in total (the continuity

15This equivalent form of (10) is not immediately obvious. However, you can show it is true by considering: the

continuity equation, the fact that ρ and µ are constants, and the symmetry of second derivatives.
16A diagonal matrix with non-zero elements equal to unity.
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equation and three momentum equations associated with the Cartesian coordinates), corresponding
to our four main variables 〈u〉, 〈v〉, 〈w〉 and 〈p〉... plus all the Reynolds stresses17 〈u′iu′j〉! This is
called the closure problem, because our model is not complete, or closed, until we have as many
equations as unknowns. This problem gives birth to a vast field of research dedicated exclusively
to turbulence closure models. Given the scope of these lecture notes, we will only provide an
overview of one of the simplest, and widely used, ways to solve the closure problem; namely: the
concept of eddy viscosity.

As mentioned above, Reynolds stresses transfer momentum via random fluctuations of the mean
velocity field, which is not too different from the way molecules transport momentum via their
random motion leading to viscous stresses. It is then tempting to think that an analogy can
be drawn between these two mechanisms. And this is precisely what the French mathematician
and physicist, J. V. Boussinesq, did in 1877. Boussinesq hypothesised that, analogous to viscous
stresses, the deviatoric Reynolds stresses could be mathematically modelled as being proportional
to the mean rate of strain. First of all, let us define the deviatoric Reynolds stress18; namely:
(−ρ〈u′iu′j〉+ 2

3ρkδij), where k is the turbulent kinetic energy19, in turn defined as k ≡ 1
2〈u
′
iu
′
i〉. The

Boussinesq hypothesis then tells us that

− ρ〈u′iu′j〉+
2

3
ρkδij = ρνT

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
, (13)

where νT = νT (x, t) is a positive scalar coefficient called – in keeping with the analogy – the
turbulent or eddy viscosity. As you would expect, the more turbulent the flow, the larger this
coefficient should be. Eq. (11) may be rewritten as

D〈uj〉
Dt

= gj +
∂

∂xi

[
ν

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
− 〈p〉δij

ρ
− 〈u′iu′j〉

]
, (14)

which, after use of (13), becomes20

D〈uj〉
Dt

= gj +
∂

∂xi

[
(ν + νT )

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)]
− 1

ρ

∂

∂xj

(
〈p〉+

2

3
ρk

)
. (15)

The sum of ν and νT is sometimes called the effective viscosity, νeff ≡ ν + νT . In practice, ν is
usually neglected. This is because water has a small kinematic viscosity, ν (∼ 10−6 m2s−1), which
in turn means that it will almost always flow under turbulent regime (in natural open channels
at least), thus leading to νT � ν and hence νeff ≈ νT . The above equation also shows that the
effect of the turbulent kinetic energy k is to modify the mean pressure field, and even though it
represents yet another unknown, it is often absorbed within a modified pressure21, p̃ = 〈p〉+ 2

3ρk.
The turbulent viscosity, νT , is often taken as a calibration parameter within numerical models. In
the simplest case, a positive constant value of νT is employed. In any case, once νT is determined
(and k dealt with, as discussed above), our model is finally closed since, by writing the Reynolds

17Considering that Reynolds stresses are the components of a symmetric tensor (matrix), such that 〈u′iu′j〉 = 〈u′ju′i〉,
how many (potentially) different components of this tensor do we have?

18The why and how to derive this is not of our immediate concern.
19i.e. the mean kinetic energy (per unit mass) contained in the fluctuations of the velocity field.
20Show this.
21In practice, k is often silently omitted, but the resulting pressure will be a pressure that accounts for its effect

nonetheless.
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stresses as functions of other existing variables – i.e. 〈u′iu′j〉 = f(〈ui〉, 〈uj〉) – we achieve as many
unknowns as equations.

The concept of turbulent viscosity is a simple and convenient way of solving the closure problem,
but it is by no means the only nor the best one. It is not our objective to discuss turbulence
closure models in great detail, but the curious student may wish to do some further reading on
other methods, such as the mixing-length model or the k − ε model. Next, we discuss briefly the
former in order to understand its importance in the development of a velocity profile.

3.5 The velocity profile

Figure 3: Sketch of Prandtl’s eddy model. Eddie of radius δz, which rotates with tangential velocity u′ (red
arrows), is superimposed to a flow with steady, unidirectional velocity u (blue arrows).

We have said that the effect of turbulence is similar to that of viscosity, in that it transfers mo-
mentum between different parts of the fluid, thus giving raise to (apparent) shear stresses. We will
now elaborate on this to understand how and why a velocity profile is developed. To exemplify
this let us focus on the 2D problem involving only the x− z plane and a perfectly steady flow with
unidirectional velocity in the x-direction, which can nonetheless vary vertically (i.e. u = u(z))22.
The German engineer and one of the most prominent fluid dynamicists of the past century, Ludwig
Prandtl, developed a simple, yet insightful model to understand how turbulent eddies transport
momentum. According to this model, the one-directional flow has a velocity u at a point (x0, z0), to
which an eddy of radius δz is to be superimposed, as shown in fig. 3. This eddy has a toroid-shape
(i.e. a doughnut) of cross-sectional area δA, which rotates at constant angular velocity, yielding a
constant tangential velocity u′. Therefore, the two cross sections of the eddy highlighted in fig. 3
will be crossed by ρδAu′ kilograms of water per second each. Thus, we can say that the eddy and
the mean flow exchange mass at a rate of 2ρδAu′. But an element of mass which enters the eddy
and flows upwards (within the eddy) will also experience a change in its velocity. Originally, at

22Since the flow is perfectly steady, we ignore time-average operators; or alternatively, we say that 〈u〉 = u
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(x0, z0) this element of mass had a velocity u, but at the top of the eddy (x0, z0 + δz) it will have
a different (higher) velocity, u+ δu, where it is reasonable to assume that

δu = u′ = δz
du

dz
. (16)

Hence, the mean flow and the eddy are not only exchanging mass but, with it, also momentum, M ,
and they do so at a rate equal to 2ρδAδu × δu (i.e. [rate of mass exchange] × [change in velocity
of this mass]), which can be expressed as

dM

dt
= 2ρδA(δu)2 = 2ρδA

(
δz
du

dz

)(
δz
du

dz

)
. (17)

But according to Newton’s second law, any change of momentum must be due to a force (precisely
equal to dM/dt). In this case, this force is due to a(n apparent) shear stress23, τ , which, as any
stress, must be equal to [some force]/[the area over which it acts]. In other words, if we divide the
above equation, which is essentially a force (= dM/dt), by 2δA (the area over which our apparent
shear stress acts), we will have an expression for τ ; namely24

τ = ρ

(
δz
du

dz

)(
δz
du

dz

)
= ρ(δz)2

(
du

dz

)2

. (18)

We see then that τ not only depends on the rate of strain du/dz, but also on δz. The latter variable
is so central to this model that it receives its own name: the mixing length (typically denoted by
l; i.e. δz = l). The mixing length, or eddy’s size, is a measure of how far a particle deviates from
its mean trajectory, thus contributing to mixing (in this case, of momentum) throughout the fluid.
There is of course no easy way of measuring δz in practice, but a reasonable assumption is that it
is proportional to the distance from the bed25, z. In other words, δz = κz may be assumed, where
κ is the coefficient of proportionality. Experiment shows that, interestingly, κ is very close to a
‘universal’ constant, namely κ ≈ 0.4. For this important reason, κ receives its own name: Kármán,
or von Kármán constant, after another great fluid dynamicist, Theodore von Kármán. By using
δz = κz, we can rewrite the above equation as

τ

ρ
= (κz)2

(
du

dz

)2

, (19)

or, by defining a new variable u∗ ≡
√
τ/ρ,

u∗ = (κz)

(
du

dz

)
. (20)

23Remember, we are talking here about the Reynolds apparent stress discussed previously, not an actual shear force
acting on the fluid. This model (i.e. conceptualisation or idealisation) allows us to imagine, as a first approximation,
how momentum is transported due to turbulent eddies, but reality is of course more complex than this.

24If this model for the turbulent stress, τ , is to agree with Boussinesq hypothesis, where τ depends on νT , what

value should νT have?
25This is because in principle a particle far away from the bed is ‘freer’ to move vertically, whereas one near the

bed is restricted by the latter.
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Rewrite the above equation as

du =
u∗
κ

dz

z
, (21)

and integrate both sides to obtain
u

u∗
=

1

κ
ln z + C, (22)

where C is some constant of integration. A clever selection of C (namely, C = −(1/κ) ln z0, where
z0 is the hypothetical distance from the bed where the velocity vanishes26) then enables us to
rewrite the above equation as:

u

u∗
=

1

κ
ln

z

z0
. (23)

We see then that the consequence of Prandtl’s eddy model, in combination with the (experimentally
backed) assumption of l = δz = κz, is that a logarithmic profile of u is developed in the vertical;
i.e. u varies with the logarithm of the distance from the bed. This is called the law of the wall27.
Some caveats aside, this approximation is actually quite good for the flow we have assumed; i.e.
steady and unidirectional, which in turn is a good approximation to many open channel flows such
as rivers (see fig. 4). The variable u∗, which we have arbitrarily defined is called, confusingly, the
shear velocity. I say ‘confusingly’ because although it relates to the shear stress, τ , and it has
units of velocity, it is not an actual, real velocity to be measured in the flow, nor it has a particularly
useful physical interpretation28.

Figure 4: Log profile (eq. 23, blue line) superimposed to laboratory measurements (black symbols) in a
0.5 m deep flume (Boldrewood Campus, UoS) with a depth-averaged flow velocity of roughly 0.25 m/s (red
line).

26At the bed surface the no-slip condition must hold true. The variable z0 relates to the physical roughness of the
bed. More on z0 in Section 4.6.2.

27First published by von Kármán in 1930.
28A common misconception, not only held by students but even by more experienced engineers, is that u∗ represents

the flow velocity at or near the bed. Do not be persuaded by this tempting but erroneous thought.
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4 Open channel flows (in particular)

4.1 Context

Everything we have discussed so far can be applied to the study of flow in open channels, but also
to many other types of flow, such as breaking waves, pipe flows, air flow29, etc. However, flows in
natural open channels have certain features that separate them from other examples of fluid flows.
For instance, river and estuary flows occur predominantly in the horizontal plane30,
such that vertical acceleration of the flow can be neglected. As will be shown, this simplifies
significantly the mathematical treatment of open channels. Moreover, the river engineer is seldom
interested in detailed 3-dimensional information of the velocity field – it frequently suffices to know
what the average flow velocity or discharge is. But, averaged over what? We have talked before
about averaging our equations with respect to time (the Reynolds equations), now we will see how
something similar can be done with respect to different spatial coordinates (depth, width or both).
Finally, a crucial aspect of open channel flows – especially in connection with sediment transport
– is the concept of bed shear stress, with which we will finish these notes.

In the preceding sections, we have used different notations to: i) practice; and ii) safeguard scientific
rigour. However, in what follows, rigorous notation may distract from the main point of these notes,
which is to understand what the equations actually mean and what their limitations are. Therefore,
with the reminder that we are studying time-averaged quantities (velocities and pressure),
let us simplify our notation by dropping the angle brackets, such that hereinafter 〈u〉,
〈v〉, 〈w〉 and 〈p〉 will simply be written as u, v, w and p, respectively. We continue to work with
our main governing equations for the evolution of time-averaged variables; namely: continuity and
RANS equations. We start by writing said equations in the following form:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (24)

∂u

∂t
+
∂(u2)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
= −1

ρ

∂p

∂x
+

(
ν∇2u− ∂〈u′iu′1〉

∂xi

)
(25)

∂v

∂t
+
∂(uv)

∂x
+
∂(v2)

∂y
+
∂(vw)

∂z
= −1

ρ

∂p

∂y
+

(
ν∇2v − ∂〈u′iu′2〉

∂xi

)
(26)

Dw

Dt
= −g − 1

ρ

∂p

∂z
+

(
ν∇2w − ∂〈u′iu′3〉

∂xi

)
(27)

Our first main simplification for open channel flow concerns the terms in brackets in the r.h.s of
the momentum equations, which relate to viscous and Reynolds stresses. In general, horizontal
gradients (variations in x and y) of these stresses are small when compared to the vertical ones
(in fact, viscous stresses are often neglected altogether). In the vertical-momentum equation, we

29In fact, many of the concepts put forward by Prandtl, von Kármán and others, for example, were developed in
the context of aeronautics.

30By horizontal, we mean parallel to the bed, which is in turn assumed to have a small slope (for instance, natural
rivers typically have slopes of about 1:1000).
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neglect both viscous and turbulent stresses. Thus, we have:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (28)

∂u

∂t
+
∂(u2)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
= −1

ρ

∂p

∂x
+

1

ρ

∂τxz
∂z

(29)

∂v

∂t
+
∂(uv)

∂x
+
∂(v2)

∂y
+
∂(vw)

∂z
= −1

ρ

∂p

∂y
+

1

ρ

∂τyz
∂z

(30)

Dw

Dt
= −g − 1

ρ

∂p

∂z
(31)

where we define the (sum of viscous and turbulent) stresses τxz and τyz as

τxz ≡ ρν
∂u

∂z
− ρ〈u′w′〉 (32)

τyz ≡ ρν
∂v

∂z
− ρ〈v′w′〉 (33)

The above set of equations serves as our starting point for the study of flow in open channels.

4.2 Hydrostatic pressure

As we have said, open channel flows occur mainly in the bed-parallel plane, such that Dw/Dt = 0.
This assumption in turn simplifies (31) to ∂p/∂z = −ρg. Integration of this expression tells us that
the vertical distribution of the pressure is hydrostatic; namely:

p = −ρgz + c.i., (34)

where c.i. is some constant of integration, which is typically determined from the condition p =
[atmospheric pressure] at z = [the free surface]. This condition is one of several boundary conditions
that our problem needs to satisfy if it aspires to be physically realistic. Hence, before proceeding
any further, let us explore all the relevant boundary conditions.

4.3 Boundary conditions

At the free surface, not only must pressure be atmospheric as we saw above, but as the water
surface evolves in time, a particle of fluid located on said surface must remain on it. This may
sound rather redundant or obvious, but it must be explicitly stated if our mathematical model is
going to yield any sensible results. This condition is called a kinematic boundary condition, as it
relates to motion31 of the particles and not the forces causing said motion (which would instead be
called a dynamic condition). In mathematical terms, we say that the free surface is described by
a function zs, which depends on x, y and t; i.e. zs = zs(x, y, t). And to say that a particle with
velocity u = (u, v, w) located at the surface (i.e. at z = zs) must remain on it as the latter (the
surface) evolves in time, is nothing but to state that:

w =
Dzs(x, y, t)

Dt
at z = zs; (35)

31Kinematics comes from the Greek kinema, which means motion (thus cinema refers to motion of pictures).
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in other words, the vertical component of the flow velocity at the free surface must be equal to
the temporal variation of the surface. Applying the chain rule to the r.h.s., Dzs/Dt = ∂zs/∂t +
(∂zs/∂x)(dx/dt) + (∂zs/∂y)(dy/dt) = ∂zs/∂t+ u∂zs/∂x+ v∂zs/∂y, eventually leads to

∂zs
∂t

+ u
∂zs
∂x

+ v
∂zs
∂y
− w = 0 at z = zs. (36)

This will become useful soon. A similar condition can be applied to the bottom surface (or bed),
described by a function zb (i.e. the bathymetry). At any wall, real viscous fluids exhibit an
important feature: their velocity vanishes32, i.e. u = 0 at z = zb. However, when ignoring
viscous effects (which is commonly done), some tangential velocity may exist at the bottom as a
‘compensation’, and so our condition for the bed is similar to the equation above, but replacing zs
by zb. The difference arises from the fact that typically ∂zb/∂t is either strictly zero (i.e. a fixed
bed) or very small in comparison with other terms (i.e. the bed evolves in time very slowly), and
so ∂zb/∂t = 0 is usually assumed33, thus leading to the kinematic condition at the bottom34:

u
∂zb
∂x

+ v
∂zb
∂y
− w = 0 at z = zb. (37)

Question: We just said that in real flows the velocity (with all its components) vanishes at the
bottom. But is ‘bed shear stress’ not responsible for sediment motion*? How can there be bed
shear stress if there is no velocity at the bed? And if there is no bed shear stress, how could the
bed be eroded by the flow?

*we have not studied mechanics of sediment transport yet, but you may have an intuition for why this is
‘true’: if you apply a sufficiently large shear stress to a bed composed of loose material, the latter will tend
to erode.

4.4 Depth-averaged equations

By integrating our equations over the vertical, from the channel bed, z = zb, to the free surface,
z = zs, and dividing by the water depth, h (obviously, h = zs − zb)35, we end up with the depth-
averaged hydrodynamic equations also known as the Shallow Water Equations. These equations
tell us what the ‘instantaneous’36 (depth-)average, horizontal velocity is at a given (x, y) point
in the channel, without giving us any information about the velocity’s vertical variation. In many
applications, this information is enough for practical purposes. See fig. 5 for reference.

Let us begin by integrating the continuity equation (28) over the water depth:∫ zs

zb

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
dz = 0. (38)

32This is the no-slip condition referred to in footnote 26.
33And since zs = zb + h, one can also replace ∂zs/∂t in eq. 36 with ∂h/∂t (for a fixed bed).
34This equation can also be derived from the fact that the velocity normal to the bed surface (which we consider

to be fixed) is zero. Show this by recalling that a normal vector to z = zb(x, y) is given by (∂zb/∂x, ∂zb/∂y,−1) (or

∇zb).
35In fig. 1, identify zb, zs and h.
36Remember, our starting point here is the (time-averaged) RANS equations, so instantaneous must be interpreted

with care.
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Figure 5: Sketch of an open channel flow showing relevant variables for the Shallow Water Equations (SWE).
In the SWE, we work with the depth-average velocity U , rather than the actual z−dependent velocity u(z)
(the same is true for the y−component of the velocity). Only horizontal components of the flow velocity are
considered.

Use of Leibnitz integral rule yields37

∂

∂x

∫ zs

zb

udz +
∂

∂y

∫ zs

zb

vdz −
(
u
∂zs
∂x

+ v
∂zs
∂y
− w

)∣∣∣∣
z=zs

+

(
u
∂zb
∂x

+ v
∂zb
∂y
− w

)∣∣∣∣
z=zb

= 0, (39)

which, after invoking the boundary conditions (36) and (37), simplifies to

∂zs
∂t

+
∂(hU)

∂x
+
∂(hV )

∂y
= 0, (40)

or for a fixed bed (∂zb/∂t = 0),

∂h

∂t
+
∂(hU)

∂x
+
∂(hV )

∂y
= 0, (41)

where we have introduced our depth-averaged velocities, U and V , defined as:

U ≡ 1

h

∫ zs

zb

udz (42)

V ≡ 1

h

∫ zs

zb

vdz. (43)

The momentum equations (29) and (30) are treated in the exact same way, and though their
treatment is a bit more laborious, it can be shown that averaging of said equations over the water
depth yields38

∂(hU)

∂t
+
∂(α1hU

2)

∂x
+
∂(α2hUV )

∂y
= −gh∂zs

∂x
− 1

ρ
τxb (44)

∂(hV )

∂t
+
∂(α2hUV )

∂x
+
∂(α3hV

2)

∂y
= −gh∂zs

∂y
− 1

ρ
τyb. (45)

37Check this.
38Check this.
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The coefficients α1, α2 and α3 are correction coefficients that appear because the mean of the
product of two variables is not (in general) equal to the product of two mean variables39. So, for
instance, α2 is defined as

α2 ≡
1

hUV

∫ zs

zb

uvdz, (46)

with similar definitions for α1 and α3. These coefficients depend on the velocity vertical profile
(information that is ‘lost’ after averaging over the depth) and typically vary between 1 and 1.1.
Thus, in practice they are often neglected; i.e. α1 = α2 = α3 = 1 is commonly assumed. The
terms τxb and τyb are the bottom stresses (combining turbulent and viscous effects) acting in the x
and y directions, respectively, which are particularly relevant for sediment transport calculations.
Similar terms could be added if stresses were considered at the free surface due to the effect of wind
blowing.

Equations (41), (44) and (45) are called the Shallow Water Equations (SWE), and form the basis of
numerical models extensively used by engineers and scientist studying e.g. river flows, circulation
in lakes and estuaries, and coastal flooding40.

Question: Inspect the Shallow Water Equations (eqs. 41, 44 and 45) and answer: (i) what are the
variables of interest (those whose evolution is sought)? and (ii) is this a closed system of equations

and/or what conditions are necessary to ensure it is?

4.5 Cross-section-mean equations

Even though the SWE represent a considerable simplification of the original Navier-Stokes equa-
tions, their numerical solution is not trivial and the computational and data requirements (e.g.
bathymetry) may be prohibitively large in many field applications. Sometimes, the river engineer
may be satisfied by an average flow velocity at a given cross section. This is achieved by carrying
out a second integration, this time in the y direction, with the banks of the river as the integration
limits. Consider the bed to be fixed and set the datum at z = zb, such that zs = h. The banks are
located at y = y1 and y = y2, where the water depth is of course null; i.e. h = 0 at y = y1 and
y = y2. Integrating the depth-averaged continuity equation (41) gives

∂

∂t

∫ y2

y1

hdy +
∂

∂x

∫ y2

y1

hUdy +

(
hV − h∂y

∂t
− hU ∂y

∂x

)∣∣∣∣y2
y1

= 0. (47)

Note that
∫ y2
y1
hdy is the cross-sectional area, A, and

∫ y2
y1
hUdy is the flow volumetric discharge

through that area, Q. Moreover, the term in brackets vanishes because h = 0 at the boundaries
(the banks), thus leading to41

∂A

∂t
+
∂Q

∂x
= 0. (48)

39That is, if, for instance, U and V are two (depth-)mean variables, their product UV is not necessarily equal to

the depth-average of the product uv. Show this and state one particular case for which this equality does hold.
40If flood is due to storm surge, inclusion of a wind shear stress at z = zs is absolutely necessary.
41Note that if you consider steady flow (i.e. ∂A/∂t = 0), the familiar relation Q = constant or Q = A1U1 = A2U2,

widely employed in introductory hydraulics, is recovered.
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The cross sectional area can also be described as A = Bzs, where B is the distance between the
banks at the maximum water level. Thus, it is called the storage width because it determines the
storage capacity of the river section. This means that the above equation can also be expressed as

B
∂zs
∂t

+
∂Q

∂x
= 0. (49)

As before, treatment of the (x component of the) momentum equation is more complicated, more
so in this case because the velocity profile may significantly deviate from a uniform distribution for
complex cross sections. Lateral integration of (44) yields

∂

∂t

∫ y2

y1

hUdy +
∂

∂x

∫ y2

y1

α1hU
2dy = −g

∫ y2

y1

h
∂zs
∂x

dy − 1

ρ

∫ y2

y1

τxbdy. (50)

The first integral is equal to Q by definition. For the second integral, we must introduce another
coefficient, α′ defined as

α′ ≡ A

Q2

∫ y2

y1

α1hU
2dy. (51)

Finally, the third integral is evaluated by assuming that the free surface streamwise slope is constant
over the width of the river (i.e. ∂zs/∂x 6= f(y)), yielding

∂Q

∂t
+

∂

∂x

(
α′
A

Q2

)
= −gA∂zs

∂x
− 1

ρ
Pτb, (52)

where τb is the mean bed or bottom shear stress and P is the width over which it acts (i.e. the
wetted perimeter)42.

4.6 The bed shear stress

The bed shear stress or bed friction is a key aspect of open channel flows. As you may recall from
introductory theory on open channel flow, to derive Chézy equation for the velocity of a steady,
unidirectional and uniform flow, a balance between two forces is considered: pressure gradient due
to the inclination of the channel and bed friction or resistance. Essentially, this means43 τxb =
−ρg(A/P )∂zs/∂x. These two terms – bed resistance and channel inclination – are of paramount
importance in the study of open channel flows44. A thorough study of the bed shear stress would
have to take us to the theory of boundary layer and beyond. However, for our purposes, it is
sufficient to understand it as the shear stress at the bottom boundary and accept, at least for the
time being, that experiment shows that the bed shear stress scales well with U2; i.e. τb ∼ U2, to
within a multiplicative factor, which is in turn related to Chézy or Manning’s coefficients.

42Identify in fig. 1 the variables y1, y2 and P . From Part 2 Hydraulics, how do you call the ratio A/P?
43Derive this from eq. (52), assuming steady, uniform flow.
44Pretty much open channel flow is defined as a flow driven by gravity against bed resistance.
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4.6.1 Empirical determination of τb

There is no single way of determining the bed shear stress empirically. Several methods have
been proposed, all with their corresponding advantages and disadvantages. However, it must be
remarked that, with the exception of some nascent research, most methods estimate the bed shear
stress indirectly, usually via the shear velocity (which we defined ourselves back in §3.5, remember?).
For instance, a common method involves the log-law discussed in Section 3.5. Inspection of eq.
(23) shows that a single measurement of u(z), or data point (z, u), should be sufficient to obtain
u∗ via a best fit, if z0 is known. Or alternatively, if several measurements of u are taken along z,
then u∗ can be computed without need of estimating z0. This is done by noting that u(z) varies
linearly with ln z, with the slope of the line being45 u∗/κ. In other words, plot u vs ln z and fit a
line to the plot; the slope of the line is u∗/κ (remember, κ ≈ 0.4).

Then, the bed shear stress can be obtained readily from τb = ρu2
∗ (remember, we defined u∗ as

u∗ ≡
√
τ/ρ). This value of τb can ultimately be related to the depth-averaged velocity46 U via

τb = ρu2
∗ = ρCfU

2. The proportionality coefficient Cf can then be linked to Manning’s n or Chézy
coefficient Cch via

Cf =
g

C2
ch

=
gn2

R
1/3
h

, (53)

where Rh(≡ A/P ) is the hydraulic radius47. We will come back to the important concept of bed
shear stress later in the module when we study the mechanics of sediment transport.

4.6.2 Hydraulically rough and smooth beds (a note on z0)

In pipe flow, whether the pipe may be considered rough or smooth (Darcy friction factor) depends
on the diameter of the pipe (relative roughness) and the Reynolds number48. The situation is
similar for open channel flow: one cannot say whether a sand or gravel bed can be considered rough
or smooth without reference to other parameters of the problem. Based on the relative importance
of viscosity near the bottom, one can classify the bed as hydraulically rough or hydraulically
smooth. But before defining these terms, let us revisit the variable we introduced back in Section
3.5 to arrive at the law of the wall; namely z0.

We said that z0 represents some hypothetical distance from the bed at which the flow velocity van-
ishes. It is hypothetical because the whole concept of the log profile is based on certain strong
assumptions (such as the Prandtl eddy model) which do not necessarily reflect the complexity of
the real problem. Now, the velocity does vanish at some point, but it is difficult to study the
very-near-bed region with the simplified theory we have employed so far. However, with aid of
empirical observations, it is remarked that there are two distinct regimes: one where viscosity dom-
inates over the physical roughness of the bed, and vice versa. Without getting into the details of
boundary layer theory, you can probably appreciate that turbulence decreases in importance

45Confirm that ∂u/∂(ln z) is equal to a constant (which shows that the relationship between u and ln z is linear).

46which we can obtain since we know u(z).
47Show that for a very wide channel, the hydraulic radius can be approximated simply as the water depth, h.
48We are of course referring to Moody’s chart.
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as once gets closer to the bed, because the latter represents a barrier (a wall) that constrains the
fluctuating motion of the flow49. This region near the bed dominated by viscosity is called the
viscous sublayer, but its importance is relative to how physically rough the bed is. By physical
roughness we refer to the actual unevenness of the bed, which is naturally dictated by the grains
of sediment composing it. A measure of said unevenness is given by Nikuradse’s equivalent
sand roughness (or simply Nikuradse’s roughness) kn, which in turn relates (empirically) to the
bed sediment’s diameter50. The thickness of the viscous sublayer (another abstract concept we
have introduced), δ, is not determined through analytical means, but rather by experiments. One
common empirical expression for δ is:

δ = 11.6
ν

u∗
. (54)

One can then compare δ with kn to conclude whether or not the unevenness of the bed is ‘felt’ by
the turbulent flow above (see Fig. 6). In other words, if δ � kn, one can be confident that the
turbulent channel flow is relatively ‘unaware’ of the material in the bed (which is ‘buried’ within
the viscous sublayer), and we thus classify the latter as hydraulically smooth. The theoretical
z0 may then be related, empirically, to the thickness of the viscous sublayer, via, for example:

z0 ≈
δ

117
if kn < 5

ν

u∗
. (55)

Similarly, it may be reasoned that if, instead, we have kn � δ, then the flow does ‘feel’ the roughness
of the bed, and then the latter is considered to be hydraulically rough, as illustrated51 in Fig. 6.
In this case, z0 will not depend on δ, but rather on the bed roughness itself, kn. Again, empirical
expressions are employed, such as

z0 ≈
kn
33

if kn > 70
ν

u∗
. (56)

The range of validity in the previous two equations (the inequalities) should trigger an alert. We
said previously that there were two distinct regimes (hydraulically smooth and rough), but clearly,
a transition regime also exists (for 5 < knu∗/ν < 70), for which empirical expressions have also been
derived to estimate z0. But in trying to minimise the risk of confusing you with empirically-derived
expressions and those stemming from first principles, I shall not include more of the former. In
fact, this is a good opportunity to invite you to read carefully through these notes and highlight
those equations that come from first principles (such as Navier-Stokes equations, which stem from
Newton’s second law and which have not changed since originally derived in the 1800’s) and those
derived from empirical findings (which are not universal and may vary from author to author and
year to year). Bear in mind this warning on empiricism, which becomes the more important when
studying sediment transport.

49Obviously, at the very wall, for example, the vertical fluctuation of the velocity field must be zero, otherwise the
flow would go through the solid bed!

50As usual, there is no single relationship between kn and the sediment diameter D, but in general kn ∼ D, with
expressions such as kn ≈ 2.5D being commonly utilised.

51Note that since kn � δ, a consequence is that the viscous sublayer is constantly destroyed by the roughness
elements.
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Problem: Defining Reynolds number as Re ≡ Uh/ν, and expressing the shear velocity either in
terms of Manning’s n or Chézy coefficient Cch, rewrite eq. (54) to express δ as a function of Re

and n or Cch.

If you arrive at the right answer, you will see clearly that δ decreases with increasing Re (and
hence increasingly intense turbulence), as would be expected. Another corollary is that z0 also
decreases with increasing Re for hydraulically smooth beds, but does not depend on Reynolds in
hydraulically rough regime, in keeping with the analogy of pipe flow (see the Moody chart).

Figure 6: Hydraulically smooth and rough beds. [Taken from Jansen, P. P. Principles of River Engineering:
the Non-Tidal Alluvial River. Delftse Uitgevers Maatschappij, 1994.]
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