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Abstract

Energy from tidal currents is a serious candidate for renewable energy in the UK. But how
much energy can you extract from that available in a current? It turns out there is a theoretical
maximum, and the short answer is 16/27 (= 60 %) of the upstream kinetic energy fluz available
to the turbine (in a wide channel). Here, we will get to this number following the analysis by
Garret & Cummins (2007), which is in turn based on the now-classical work by Lanchester
and Beltz published almost 100 years ago. The approach consists of representing the turbine
as an infinitesimally thin actuator disk and considering momentum balances in the channel
and streamtube passing through the disk (turbine), as well as applying Bernoulli equation to
conveniently selected streamlines within the domain. We will revise the assumptions under
which the aforementioned result holds. The analysis here presented is valid for turbines in tidal
channels, streams and, with some minor changes, to wind turbines as well. This derivation is
also a good exercise to put into practice much of the knowledge you have acquired so far in this
module.

1 The problem

Figure 1: Image of installed tidal turbines. [From www.maritime-executive.com] You may also watch the
following video for some more context: https://youtu.be/8-sFLGMSMac

Consider a turbine of cross-sectional area A located at the centre of a channel of cross-sectional
area A., as shown in Fig. 2. We consider steady flow and define a stramtube that has a cross-
sectional area Ag far-upstream of the turbine. Here the flow is undisturbed by the presence of


https://youtu.be/8-sFLGMSMac
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Figure 2: Sketch for the flow due to a single turbine in a channel (plan view). [Modified from Garret &
Cummins 2007]

the disk and pressure and velocity® are py and wug, respectively, taken as uniform throughout the
channel’s cross-sectional area A.. In general, we consider velocities and pressures to be uniform
throughout their corresponding cross-sections. The streamtube expands downstream of the turbine
to a cross-sectional area As, where velocity is us, at which point the rest of the channel (i.e. the
zone outside the wake) has a velocity ug. At this channel section (section 3 in the figure), the
pressure is uniform throughout A. and equal to p4. Further downstream, thanks to mixing the flow
attains again its upstream velocity ug; but note that pressure here (p5) must be smaller than the
upstream pressure pg. At the (infinitesimally thin) turbine/disk, the pressure is discontinuous and
jumps from pq, just upstream of the disk, to po just downstream of it; the velocity through the
disk is uniform and equal to u;. Horizontal swirling of the fluid (vorticity) in the channel is not
explicitly accounted for.

The question is: provided this conceptualisation, what is the maximum power than can be
extracted from the flow?

Think about this for a second. The power available to the turbine relates to the kinetic energy flux
of the approaching streamtube, and is given by O.BpAug. Why can you not extract all that power
from the approaching current?

2 The solution

To answer the above question, we will make use of the principles of momentum and mass conserva-
tion, in addition to Bernoulli equation (plus some algebra and a bit of calculus for good measure),
which we have commonly employed throughout this module. But first, we should start working
backwards to find out what information we need.

The incoming flow (specifically, the streamtube considered) exerts a force F on the turbine?. This

Note that given the unidirectionality of the problem, we could also say speed; in other words, we only consider
positive velocities (in the downstream direction).

2This is also both the force (acting in the opposite direction) needed to keep the turbine in place and the force
that the turbine exerts on the fluid.



force multiplied by the flow velocity across the disk gives us the power extracted by the turbine?;
i.e. P = Fuy. Therefore, we need to find expressions for F' and u; as functions of other relevant
variables; only then will we be able to find a maximum value of P for a given upstream velocity
ug. This can be done following the steps below.

1.
Apply continuity (mass conservation) to both the streamtube and the whole channel. This

yields, for the streamtube
Agug = Auy = Azus, (1)
and for the whole channel
Acug = (Ac — Az)ug + Asus,

which, rearranging, yields
Ac(ug — ug) = As(ug — ug) . (2)

2.

To find an expression for the force F, apply momentum balance (Newton’s second law) to the
volume confined by the channel walls and sections 2 & 3 (shown in red in the figure). Momentum
flux into the volume is

PACU(%- (3)

Momentum flux out (note the negative sign) of the volume is:

— p(Ac — Az)uf — pAguj . (4)

Force due to pressure difference between sections 2 and 3 is:

(P4 — po)Ae - (5)

Therefore, using Newton’s second law,
F 4 (ps — po)Ae = pAcud — p(Ae — Az)u3 — pAsu3,

or
F = pAcuy — p(Ac — As)ui — pAsui + (po — pa)Ae. (6)

Later, it will be useful to express (6) in the following alternative form:

F= _pAc (U?L - u(Z)) + pA3 (U421 - u%) + Ac(pO - p4) . (7)

3.
Apply Bernoulli to a streamline connecting sections 1 and 3 outside the streamtube to find an
expression for the pressure difference pg — ps. We have
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3Remember the definition of power: the rate at which work is done. The amount of work necessary to cause a
change dFE in the mechanical energy of the fluid passing through the turbine (which is turn employed to make the
blades rotate) is dW = Fdz. The rate at which this work is done (i.e. power) is thus: P = dW/dt = Fdx/dt = Fua,
where u; is the flow velocity through the infinitesimally thin disk.




or

(o — 1) = 5 (v 8) . Q

4.
Now we can use (8) in (7), yielding

1
F = —pAc (uf —uf) + pAs (uf —u3) + SpAe (uf — )

1
= —5pAC (ui — u%) + pAs (ui — u%)

1
= —ipAC(u;l — UQ)(U4 + Uo) + pAg(U4 — U3)(U4 + U3).

But we can simplify this further by invoking (2), obtaining

1
F'=—5pAc(ug — uo)(ua + uo) + pAs(ua — uz)(ua + u)

1
= —§PA3(U4 — ug)(ug + uo) + pAs(ug — ug)(ug + ug)

U4 + Ug
= pAs(us — u3) <— 5 Tust Us) ,

or

1
F = 5,0143(“4 —ug) (ug + 2uz — up) . (11)

5.
We have now an expression for F', but to carry on we also need to relate u; to other variables. We
can gain additional information by applying Bernoulli to two different streamlines: one connecting

sections 1 & 2, and a second one connecting sections 2 & 3 inside the streamtube or wake. We
obtain the following corresponding expressions:

pO_pl_l(UQ 2)7

P g\t U (12)
for the streamline connecting sections 1 & 2, and
p2—ps 1

5 =3 (u% — u%) , (13)

for the inner streamline between sections 2 & 3.

If we add up these two equations, we get

+ uz — Uy

Po — P4 p2—p1:1(2 2)
P P 2 ’



but from (8) we get an expression for (pg — p4)/p, thus simplifying the above equation to

— 1
n p Pz _ 5 (ui - ug) . (14)

Now we can formulate a second expression for F', since we know that ' must be equal to the net
pressure acting on the disk (i.e. p; — p2) multiplied by its area A; in other words

1
F=A({p —p2) = §PA (uf —u3). (15)

6.

We still do not have an expression for uq, but the two equations that we have obtained for the
force F' (egs. 11 and 15) must be equivalent (otherwise everything you have learnt in Hydraulics
would be wrong!)*. Equating these expressions, we get

1 1
F= ipA?’(M —u3) (ug + 2uz — up) = ipA (uj — u3)

Ag(U4 — U3) (U4 + 2ug — U()) = A(U4 — U3)(U4 + U3)

As (U4 + 2ug — u()) = A<U4 + U3),

and from continuity (eq. 1), we know that A = Asus/uj, thus

u
F = A3 (ug + 2u3 — up) = Asuj(uzx + u3),
1

which leads to
us(ug + us3)

) 17
U4 + 2uz — ug ( )

Ul =

7.

Now that we have an expression for u; as a function of other velocities (eq. 17), we can invoke one
of the equations we got for F' (let us use eq. 15, as it includes the cross-sectional area of the disk)
and find an expression for the power extracted P by the turbine (assuming no internal losses);
namely,

(u?l - u%) (ug + U3)'

1
Uug + 2uz — ug (18)

1 u
P:Fu1:§pA 5

Eq. (18) gives us the power extracted from the flow when a single turbine is located in a channel
of finite width, such that this lateral confinement affects the flow (u4 depends on the interaction
with the walls). However, finding a maximum for this expression is not trivial (the curious student
is referred to the paper by Garret & Cummins 2007 for the solution to this interesting problem).
Next, we discuss some assumptions that will allow us to simplify this expression and recover the
Lanchester-Beltz result.

“[Ex. 1] Explain in words the approaches followed to obtain both eqs. (11) and (15). \'s



8.

Consider a channel that is very wide in comparison to the turbine (i.e. Ac > A), such that the
velocity outside the wake (u4) tends to the velocity far-upstream and far-downstream of the disk;
i.e. ug — ug. It is then readily seen that (18) simplifies to®

1
P = ZPA (ug - ug) (uo + ug). (19)

To find the maximum theoretical power for a given upstream velocity ug, Puax, we need to
compute OP/0us = 0 (the algebraic exercise is left to you). After doing so, we observe that P has
a maximum® at ug = ug/3, thus yielding

8

Pmax = EPAU% ’ (20)

which is the classical Lanchester-Beltz result.

Lastly, we can define a ratio of Ppax to the approach/upstream kinetic energy flux awvailable to
the turbine’, 0.5pAu3. This ratio is often called the power coefficient (and sometimes misleadingly
referred to as efficiency) , Cp, and is equal to Ppax/(0.5pAud), or

Q%pAug 16

C’P = — a0
%pAu% 27

(21)

which is the number we were originally looking for (Q.E.D.).

Renewable energy sources such as (onshore and offshore) wind and tidal currents have gained quite
some attention in recent years in the UK and abroad, with both success stories and challenges to
overcome. In any case, there is no doubt that research and engineering will continue to be carried
out in this area. The theory described here is widely used as a preliminary exploration tool for
energy potential in selected sites, with Pentland Firth, Scotland being a relatively recent, worth-
noting example of its application to tidal energy (see Adcock et al. 2013).
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5[Ex. 2] Also show that under this assumption u; simplifies to the average of the velocities upstream and down-

stream of the disk; i.e. u1 = 1 (uo + us). \'s

S[Ex. 3] Find the other root that yields an extremum (maximum or minimum) of P and explain why we disregard
that second root. /

7 Alternative interpretation: this is the kinetic energy of a water mass flowing at velocity uo through an area equal
to the turbine’s cross-sectional area.
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