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1 Introduction

Students of open channel hydraulics derive much of their knowledge from the (often implicit)
assumption that the bed of the channel is fixed, such that it affects the flow1 but is not in turn
affected by the flow. However, the study of natural rivers and streams (the examples of open
channel by excellence), as well as that of estuaries and the coast, confronts us with another, more
complex reality. Natural open channel beds are composed of loose material (sediment) that can be
dislodged and transported by the flow, thus leading to erosion/deposition processes and sediment
transport2. Moreover, the erosion and accumulation of sediment in different parts of the bed
implies an evolving bed morphology3. But the water flow is in good measure governed by the
bed (a boundary), which in turn evolves because of the flow itself! This gives raise to a feedback
between the water flow and the bed over which it flows. We call this morphodynamics: the
dynamics of a changing bed.

The study of sediment transport and morphodynamics may appear as a daunting task due to the
inherent complexity and randomness involved. After all, sediment comes in all shapes, sizes and
layout (on the bed), and it is usually subject to turbulent flow, which, as we just learnt, is itself a
complex and random phenomenon. Because of this, the preferred tool to approach this problem has
historically been empiricism, understood here as the method that advocates solution to complex
problems based on experimental, approximate findings, rather than rigorous theoretical derivations
based on first principles4. In this sense, our current knowledge of pure-water flows is centuries
ahead of our understanding of the mechanics of sediment transport and morphodynamics. The
latter are very active areas of research today. That being said, the past few decades have seen an
increasing interest and, with it, body of knowledge in this field. Thus, in these notes, I shall try to
introduce you to this topic by presenting the ‘conventional’, well-established approach while also
pointing out, when relevant, what its limitations are and what the state-of-the-art research has to
say about it.

2 Initiation of motion

The most basic question regarding the motion (or transport) of sediment is arguably this: when will
a grain of sediment resting on the bed start to move? This apparently simple question represents
one of the many unsolved problems in this field. At first sight, this may seem difficult to believe.
After all, this is well-established classical mechanics (not modern theoretical physics). We should
know what forces and equations govern the motion of this initially resting particle, right? Right,
the problem is not that we ignore the origin of the forces that govern the motion of this initially
resting grain, but rather that we cannot pragmatically obtain information about said forces – i.e.

1Essentially, the bed is treated as a boundary condition, as discussed previously in this module.
2You can probably guess what the practical implications of this are: e.g. scour around structures, dam siltation,

coastal erosion, and so on.
3From Greek morphe, ‘form’. Thus, in this context, morphology refers to the form or shape of the bed (also known

as bathymetry).
4There is of course nothing wrong with experimentation itself, which is actually the core of the scientific method.

Empiricism in this context refers to the rough analysis of experimental results without necessarily accounting for the
physics behind the patterns observed; for example, a best-fit curve to a set of points (which, as we will see later, is a
common tool in sediment transport research).
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we cannot estimate them accurately in practice.

Consider a single sediment particle5 resting on top of other similar particles, which is what the bed
actually is. Essentially, the forces acting on this target particle are those caused by gravity (its
weight), the contact with other particles and the net force exerted by the fluid. The two former
are relatively easy to quantify, but how about the fluid force? Strictly speaking, the net fluid
force would include (i) forces due to friction between the fluid and the surface of the particle (skin
friction), and (ii) forces due to pressure differences at different points on the surface of the particle
(form drag and lift)6. Mathematically, this equates to saying that the net hydrodynamic force on
the particle is nothing but the integral of pressure and shear stresses over the surface of the particle
(see fig. 1). Can you imagine doing this for every single sediment grain resting on the bed of a
river?

Figure 1: Snapshots of (normal) pressure on the surface of a resting sphere at different times during a turbu-
lent flow event. The integral of this pressure over the surface of the sphere gives you the main hydrodynamic
forces acting on the sphere: the sum of lift and drag. A similar integral for the tangential (shear) stresses
gives you the skin friction. [Taken from Yousefi et al. (2020) J. Fluid Mech. 893 A24.]

Obviously not. Therefore, a different, more pragmatical approach ought to be adopted. To this
end, let us ‘zoom out’ and look at the problem from a more ‘macroscopic’ (or bulk) scale. At a
larger scale, you can think of the flow as exerting a bulk shear stress on the bed (which is in turn,
the resistance ‘felt’ by the flow). This shear stress, τ , multiplied by some representative bed area,
Aτ , translates into a shear force. At the particle scale, we can think of this shear force as the
sum of drag forces acting on all the particles within Aτ (see fig. 2). The representative area, Aτ ,
is related to some projection of the top-most erodible particles, and should therefore go like the
square of some characteristic length. Real sediment particles come in all sort of shapes, but most
of the times they can be treated as sufficiently ‘round’ so as to speak of a representative diameter
D, such that the representative area is Aτ ∝ D2 (again, see fig. 2). Therefore, the shear force
τAτ ∝ τD2.

The hydrodynamic shear force is trying to erode the top-most particles on the bed7. The coun-

5In this field, it is common to use interchangeably the terms grain and particle. A physicist may be utterly
disturbed by this!

6If we are really strict, we should include buoyancy here as well, but buoyancy is typically accounted for by using
a modified weight of the particle.

7To be more rigorous, there are also lift forces involved, but it is commonly accepted that streamwise directed
drag (leading to shear) is the main driver of bed erosion.
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Figure 2: The fluid bulk shear stress τ , acting on Aτ , translates into a shear force applied to all the particles
within Aτ (intersected by the green plane). This force can also be thought of as the sum of drag forces
acting on each particle (see e.g. red sphere) within Aτ . The value of the latter will naturally depend on the
number of particles involved, each of diameter D, but we know that in general Aτ ∝ D2.

terweight to this destabilising force is related to the other forces we have previously discussed –
weight and contact forces – which ultimately relate to the particles’ submerged weight8. For a
single particle, its submerged weight is (ρs − ρ)gVp, where g is the gravitational acceleration, Vp is
the volume of the particle, and ρs and ρ are the densities of the particle and water, respectively.
Of these parameters, only Vp is problematic, for, again, how can we estimate accurately the volume
of every single particle on the bed? (density tends to be remarkably constant for a given type of
sediment) However, we know that in any case it should be expected that Vp ∝ D3 (in the case of
perfect spheres, obviously Vp = πD3/6). The challenge is to find a critical value of τ – let us call
it the critical bed shear stress τc – that is capable of overcoming the stabilising forces related
to the particle’s submerged weight. To this end, the power of dimensional analysis is exploited, as
with many other complex problems in hydraulics. If there is an important parameter governing the
initiation of motion, it is likely to involve the ratio of the destabilising force (due to the bed shear
stress) and the stabilising forces (related to the submerged weight of the erodible particles)9. This
was probably the line of reasoning that led A. Shields, an American engineer studying in Germany
in the 1930’s, to show empirically that the non-dimensional number combining these two forces10,

θc ≡
τc

(ρs − ρ)gD
, (1)

actually does well in predicting when the bed will start to erode (or what is the same, the top-most
particles will start to move) for a given (type of) Reynolds number, in turn defined as

Re∗ ≡
u∗cD

ν
, (2)

8i.e. the particle’s actual weight minus buoyancy force.
9Think of the analogy with the basic mechanics problem of static friction. What is the static friction coefficient

if not the ratio of the critical destabilising force to the stabilising forces (which are related to weight)?
10We get this number by dividing τcD

2 by (ρs − ρ)gD3. Show that this is indeed non-dimensional.
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where ν is the kinematic viscosity of water and u∗c ≡
√
τc/ρ is the critical shear velocity (so called

because it is, by definition, associated with the critical shear stress we are looking for). In other
words, Shields found that the threshold of erosion he observed experimentally was (relatively) well
explained by a curve θc = f(Re∗). Today we call this curve, naturally, Shields curve, which is a
tool widely used by engineers and scientists alike. The variable θc is often referred to as Shields
parameter, entrainment function or the non-dimensional critical bed shear stress.

Figure 3: Original curve for initiation of motion from Shields’ PhD thesis.

However, this curve presents important limitations. As can be seen in the original plot in Shields’
PhD thesis (fig. 3), Shields actually reports a band, not a curve, which implies that Shields himself
was well aware of the approximate nature of his findings. Moreover, via u∗c, the variable τc appears
in both sides of the equation θc = f(Re∗), making it an implicit function, which complicates its
use. This caveat, however, is remedied by plotting θc, not as function of Re∗, but as function of
another non-dimensional variable dependent on the particle’s characteristics and fluid’s viscosity;
namely, the non-dimensional particle diameter:

D∗ ≡ D
[(

ρs
ρ
− 1

)
g

ν2

]1/3

. (3)

This leads to a modified version of Shields curve (see fig. 4), which is the one actually used today.
There are a few interesting remarks about this curve. For instance, we observe that for large values
of D∗ (say D∗ & 20), θc increases with D∗; that is, the larger (and thus heavier) the particles, the
larger the shear stress required to mobilise them. This makes sense. But for small values of D∗ (say
D∗ . 10) we observe the opposite: θc increases for smaller values of D∗. Why should we expect
to require larger values of shear stress for smaller (and thus, lighter) particles? One reason is that
for very small particles, such as clay, additional forces of electrostatic nature play a major role in
stabilising the bed11. We call this sediment cohesive. The mechanics of cohesive sediment are

11Can you think of another potential reason (perhaps related to the viscous sublayer)?
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very interesting but quite different from those of larger, non-cohesive sediments. In this module,
we will only address the latter.

Figure 4: Modified Shields curve (θcr =)θc = f(D∗). Symbols represent various experimental data, while
lines represent curve fits to data (these are only two out of many such empirical fits). I leave it up to you
to judge how well or bad these curves fit the experimental data. [Modified from Soulsby, R. Dynamics of
marine sands. Thomas Telford, 1997.]

Another important feature of Shields curve is its evident uncertainty. Note that for a given value
of D∗, one can easily expect an uncertainty in the predicted θc of about one order of magnitude(!).
There are several reasons for this. Mainly, you may have noticed that we have avoided all mention
of time and space averages of variables, contrary to what we did when studying Open Channel
Hydrodynamics. For instance, when we discussed above the hydrodynamic force acting on the
bed particles, did we mean instantaneous or time-averaged force? Textbooks and practitioners
will often quietly ignore this point, which is of great relevance. Sediment particles on the bed are
typically subject to turbulent (and thus fluctuating) flow. Hence, if your calculation of τ is based
on, say, time-averaged flow velocities, you may be ignoring instantaneous fluctuations (or pulses)
which can be large enough to dislodge the top-most particles – i.e. you will be underestimating
the flow capability to erode the bed. Some recent research has proved that indeed the impulse12

of hydrodynamic forces, and not their time-averaged values, represents a more accurate criterion
for predicting whether erosion will occur. However, this research is at an early stage and it is still
difficult to see how concepts such as impulse could be included in engineering practice13.

So far we have also avoided mention of the channel inclination, which is a very important char-
acteristic of open channel flows. The effect of the bed slope manifests itself in the component of
the particle’s weight opposing motion, so the definition of θc in eq. (1) implicitly assumes that its
effect is negligible. This is only true when the bed is horizontal or nearly horizontal, which actually
happens to describe well many natural rivers and estuaries. However, for steep channels (as in
mountain rivers) or for river banks or certain beaches (and for the sake of generality), the effect of
the bed slope may be included in a simple way by adding vectorially the additional component of

12i.e. time integral of force
13Can you see why?

6



the weight, yielding:

τβc
τc

=
cosψ sinβ +

(
cos2 β tan2 φ− sin2 ψ sin2 β

)1/2
tanφ

, (4)

where τβc is the critical shear stress on a channel of slope angle β (with respect to the horizontal),
τc is the critical shear stress on a horizontal bed (i.e. the one obtained from Shields curve), ψ is the
angle that the flow makes with the upsloping direction (see fig. 5), and φ is the angle of repose (the
angle at which sediment avalanches under zero flow). When the flow is directed laterally across the
slope (ψ = ±90◦, as in river banks), the above equation reduces to

τβc
τc

= cosβ

(
1− tan2 β

tan2 φ

)1/2

, (5)

whereas for the case of flow being aligned with the bed slope (ψ = 0◦), we have14

τβc
τc

=
sin(β + φ)

sinφ
. (6)

Estimating whether the top-most grains will be eroded is just the beginning of the problem, for
once they have been mobilised, they are then transported by the flow along the bed, and they do
so in different modes, as we shall describe next.

3 Bedload transport

When the shear stress exerted by the flow on the bed exceeds the threshold of motion, sediment
starts to be transported along the channel. If τ is not much larger than τc, the motion of sediment
will be confined to the region near the bed, and particles will move either by rolling, sliding or
saltating (hopping) along the bed. We call this type of sediment motion bedload. Bedload
transport is typically associated with relatively large sediments such as gravel and coarse sand15.

Quantifying the amount of sediment that is transported by a current per unit time (i.e. the
sediment transport rate) is very important in hydraulic engineering (e.g. for estimating dam
siltation or shoreline retreat rates), but is also a very challenging task due to all the complexities
discussed so far. This problem, more than any others, has been heavily dominated by empirical
approaches that simply look for a practical formula (often resulting from best fits to experimental
data) that works to a satisfactory level in field applications. It is likely that empirical formulae
will remain the standard tool employed by the hydraulic engineer for many years to come, but
there is no much point in memorising the dozens of existing empirical relations – to this end, you
may always consult manuals and textbooks on the matter16. However, many of these formulae are

14Arrive at this equation by considering an analogy with the Mechanics 101 problem of a box on a ramp.
15Note that by ‘relatively’ we mean in relation to the flow conditions. For a very slow moving fluid, sand may move

as bedload, whereas the same sediment might be entrained into suspension (see §4) by a faster moving flow.
16For example, the book Dynamics of marine sands by Soulsby, R. (Thomas Telford, 1997), from which sev-

eral figures are taken here, is an excellent go-to book for practical issues about sediment transport in the coastal
environment.
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Figure 5: Threshold of motion on sloping beds. [Taken from Soulsby, R. Dynamics of marine sands. Thomas
Telford, 1997.]

based, at least to some degree, on certain physical principles which are worth discussing since they
provide us with important insights into the problem.

In the previous section we discussed Shields criterion, which employs the bed shear stress to predict
whether a given bed will erode or not. It is thus natural to extend this criterion to the prediction
of sediment transport rates; i.e. to estimate the volumetric bedload transport rate, qb, as some
function of τ . This idea goes back to the 19th century French engineer Paul Du Boys, whose work
served as the basis for the development of further theories of bedload. One such theory argues that
qb may be expressed as some power series17 of τ ; namely,

qb(τ) = K0 +K1τ +K2τ
2 +K3τ

3 + ... (7)

for τ ≥ τc. Now, if terms of order > 2 are neglected18, and the following two self-evident conditions
are invoked: qb = 0 if τ < τc and qb = 0 if τ = τc; then it follows that K0 = 0, K1 = −K2τc,

17After all, any function f(x) can be locally approximated by a power series of x (Taylor expansion).
18We will discuss in class why it is sensible to do so, but for now suffice to say that in many problems in nature,

the dominant (or leading-order) terms are the low-order ones.
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yielding19

qb = K2(τ − τc)τ, (8)

The problem then reduces to determining K2. This is typically done via empirical methods – i.e.
fit the above curve to a set of experimental data and ‘tweak’ K2 until you get a good fit. However,
an ever growing body of empirical evidence shows that, actually, a constant value of K2 does not
yield an accurate expression for qb. Nonetheless, the equation above does convey an important
message: in general, we expect the bedload rate to increase (non-linearly) with some combination
of bed shear stress and excess bed shear stress (i.e. the difference τ − τc). In this case, when
τ � τc, we can expect qb ∼ τ2.

Another non-linear relationship between qb and τ can be derived theoretically by following on the
steps of the prominent 20th-century English sedimentologist (and soldier of the British Army), R.
A. Bagnold. Bangold’s approach, in essence, was to think about the work done by the flow on the
bed particles when transporting them – more specifically, on the rate at which this work is done
(i.e. power). The rate at which work is done on an object is given by the (dot) product of the
force doing the work and the velocity of the object. In a given area of bed, the force mobilising
the bed particles will depend on τ , and the corresponding velocity of the bedload particles will be
close to some near-bed velocity. As discussed towards the end of Open Channel Hydrodynamics, τ
in turbulent flows varies as U2, where U is the depth-average velocity. Also, any near-bed velocity,
u(z → zb), can be seen as a fraction of U ; i.e. u(z → zb) ∼ U ∼ τ1/2. So the available ‘flow power’
near the bed will vary as τU ∼ τ3/2 ∼ U3. Of course, Bagnold pointed out that not all of this
power will be converted into motion of the bedload particles (think of it as a sort of ‘transport
efficiency’). But still, for our purposes here, that remark does not change the fact that we expect
the trend qb ∼ τ3/2 to hold true (note, the exponent is different than in Du Boys’ approach). Fig. 6
shows some lab data fitted with a curve of the form qb ∝ (τ − τc)3/2, which shows that the scaling20

prediction from Bangold’s approach is good21.

In addition to the approaches discussed above, there exists a plethora of empirical and semi-
empirical formulations for bedload. The vast majority of them may be expressed in the general
form22:

qb = F
(
τm1 − τm2

c

)n1 (
τm3 − τm4

c

)n2
τn3, (9)

where m1,m2,m3,m4, n1, n2 and n3 are all real constants. Table 1 shows the values of said
constants for some popular bedload formulae. The coefficient F , on the other hand, may or may
not be taken as a constant. For instance, for the formulae by Meyer-Peter and Müller (1948) and
Fernández Luque and van Beek (1976), F is taken as a constant; but for van Rijn (1984), for

19Show this .
20In the absence of accurate, theoretical predictions giving absolute values of qb, scaling arguments are very valuable.

The symbol ∼ can be read as ‘varies as’, ‘goes like’, or ‘scales with’, and it denotes large values of the variable involved.
For example, y ∼ x2 may be read: ‘y varies with the square of x, at least for large values of x’. In these notes, when
I use the other symbol ∝ (proportional to), I want to say that the only thing missing is a multiplicative factor (when
using ∼ an additive constant may or not be involved). In other words, y ∝ x2 implies y = Kx2, while y ∼ x2 may
also apply to y = Kx2, but also to y = Kx2 +Mx+N . Note, however, that the use of ∼ and ∝ varies from source
to source in the literature.

21The scaling qb ∼ τ3/2 implies that τ � τc. Indeed, for conditions very close to the threshold of motion (i.e.
τ → τc), very different scaling laws apply. The reasons are still unclear – this is a very active area of research.

22Although, usually, they will be expressed in non-dimensional form; i.e. θ instead of τ , and a similar non-
dimensional version of qb, typically denoted Φ.
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Figure 6: Volumetric bedload transport rate (per unit channel width), qb, against excess bed shear stress,
(τ−τc). Symbols represent experimental data, while red line is a best-fit curve of the form qb = Abf (τ−τc)3/2,
where Abf is a fitting parameter.

Table 1: Values for exponents in eq. (9), for different bedload formulations. Values not shown (since they
are not relevant) when n1 = 0 or n2 = 0.

Formula m1 m2 m3 m4 n1 n2 n3

Meyer-Peter and Müller (1948) 1 1 - - 3/2 0 0
Bagnold (1963) 1 1 - - 1 0 1/2
van Rijn (1984) 1/2 1/2 - - 2.4 0 1/2
Yalin (1963) 1 1 - - 1 0 1/2
Ashida and Michiue (1972) 1/2 1/2 1 1 1 1 0
Wilson (1966) - - - - 0 0 3/2
Nielsen (1992) 1 1 - - 1 0 1/2
Fernández Luque and van Beek (1976) 1 1 - - 3/2 0 0
Soulsby (1997) 1 1 - - 1 0 1/2

instance, F is a function of the water depth, sediment diameter and the bed friction coefficient.
As mentioned previously, this topic is notoriously dominated by empiricism. The actual formulae
presented in Table 1 and their corresponding ranges of validity may be found in their original
publications or in popular textbooks on the topic.

Several other approaches have been adopted to try to understand and quantify bedload. One such
approach worth mentioning was put forward by Hans Albert Einstein23 in the mid-20th century,
and employed probabilistic methods to describe bedload. Although quite original, his theories,
however, have not become terribly popular among practitioners to this day.

Exercise: The data in table 2 was used to generate fig. 6. Select any three formulae from table 1
and fit them to the aforementioned data. Comment on the accuracy of each expression.

23Son of the Albert Einstein, Hans became a prominent hydraulic engineer known for his pioneering work on
sediment transport. A (most likely apocryphal) legend claims that, after listening to Hans explain his theory of
bedload transport in rivers, Albert Einstein asked him to stop because all that was too difficult to grasp! (In reality,
Albert may have even helped Hans work out his probabilistic theory of bedload.)
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Table 2: Data used to generate fig. 6

τ (Pa) qb (×10−7 m2/s)

0.781 0.0
0.997 0.595
1.220 1.667
1.474 2.778
1.658 4.167

NOTE: This exercise is merely for practice, but when selecting empirical expressions for real
applications beware that expression such as those from table 1 are usually limited to the range
of experimental parameters and conditions they were derived for; for example: subcritical flow,
D < 0.23 mm, 1 < τ/τc < 5, etc. These expressions can be uncertain as they are, but using them
outside their range of validity can further amplify such uncertainty. So, always check the range of
validity for each expression!

4 Suspended load

When the bed shear stress far exceeds the threshold of motion24, sediment entrains suspension
mode. This means that rather than being confined to the near-bed region, sediment is transported
long distances by the flow in the region of the latter away from the bed (i.e. it is suspended).
At any given time, gravity is trying to bring each grain of sediment down. Thus, for the latter
to remain in suspension, an upward force must be acting upon it. To understand this better let
us perform a simple mental experiment. Imagine a vertical tube filled with still fluid. Then drop
a grain of sediment inside it. If gravity alone acted upon the grain, the latter would accelerate
uniformly, such that its velocity would continuously increase with time (up to infinity if given
infinite time!). However, in reality, the grain also experiences (flow-induced) drag, which opposes
motion. Since the drag force increases with the square of the grain velocity (relative to the fluid),
there must be a terminal velocity for which drag force is equal to the particle’s (submerged) weight,
such that particle’s acceleration eventually ceases to exist (the particle continues to fall but with
constant velocity). This velocity is called, unsurprisingly, the fall or settling velocity, wf . And,
as mentioned, it can be obtained from the equilibrium condition where drag force and particle’s
weight balance each other; namely:

1

2
CDρAsw

2
f︸ ︷︷ ︸

drag

= (ρs − ρ)gVp︸ ︷︷ ︸
subm. weight

, (10)

where As is the projected area of the particle normal to the flow (naturally, for a spherical particle
of diameter D, As = πD2/4); Vp is, as before, the particle’s volume; and CD is the drag coefficient.
For the sake of generality, in the equation above, wf should be replaced by the particle velocity
relative to the flow25. The important message here is that, due to drag, the particle eventually
attains a terminal velocity relative to the fluid. So, in the second stage of our mental
experiment, let us now connect the tube to a pipeline powered by a pump, such that a flow velocity

24This can happen either because of a very fast flow, very fine (light) sediment, or both.
25which is obviously equal to wf for the particular case of still fluid.
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is induced upwards (opposite to the motion of the falling particle). Let us call this velocity, w; then
the particle will appear to fall at a velocity (wf − w) (seen from an stationary frame of reference
– i.e. you watching the experiment). Something interesting happens when we increase the pump
power to the point where w = wf (recall, w is directed opposite to wf ): the particle seems not to
fall at all – it is suspended.

The key point from the above example is the following: for sediment particles to remain in
suspension, upwards forces induced by the vertical component of the flow velocity
must act upon them. But if the flow is streamwise directed as in most rivers, how can there
be upward forces induced by the flow? The answer is to be found in turbulence. Recall that a
signature of turbulent flow is that the velocity field presents fluctuations in time and (all of the
three coordinates of) space. Even for a flow where the mean vertical component of the velocity is
null (i.e. 〈w〉 = 0), there exist non-zero fluctuations, w′, which are responsible for the suspension
of sediment. Furthermore, w′ increases with increasing turbulence26, which is in agreement with
our earlier statement that suspended load is associated with faster flows than those responsible for
bedload.

In general, the volumetric concentration of suspended sediment (i.e. the volume of sediment sus-
pended per unit volume of fluid) varies from place to place (and time) within the fluid, and it is
typically higher near the bed than at the free surface27. Further insight into the distribution of
suspended sediment concentration can be gained by realising that the latter behaves (to a good
approximation) as a scalar physical quantity (just like heat or salinity) that is transported by the
fluid, and can thus be modelled by the advection-diffusion equation. The advection-diffusion
equation28 is derived from conservation principles and simply states that any scalar quantity, S,
is transported by a fluid via two main mechanisms: advection and diffusion. Thus, locally, the
temporal variation of S is given by:

∂S

∂t
= −∇ · (vS)︸ ︷︷ ︸

advection

+∇ · (D∇S)︸ ︷︷ ︸
diffusion

(11)

(if no sinks or sources of S are considered), where v is the velocity at which the quantity of interest
is moving29, and D = (Dx, Dy, Dz) is the diffusion (or dispersion30) coefficient (with components for
each Cartesian direction), which depends inherently on the quantity being diffused and the medium
where the diffusion occurs. Consider that S represents the suspended sediment concentration,
C = C(x, y, z, t); and v = (us, vs, ws) is the velocity vector field of the water-sediment mixture (or
‘dispersoid’), which is divergence-free31, i.e. ∇·v = 0; and replace D with the sediment diffusion

26Recall, w′ would be equal to zero only in laminar flows.
27Q: Can you see why?
28Also known as convection-diffusion equation or scalar transport equation.
29If S represented, for instance, heat, then v would denote the fluid velocity field. But, as we will see soon, when

S relates to ‘massive’ particles such as those of sediment, v ought to represent the velocity of the mixture as a whole.
30see footnote 32.
31A couple of important points here. First, we are tracking the evolution of the concentration C, which is by

definition a mixture of water and sediment (it is the volume of sediment to be found in a given volume of water; or
rather, the ratio of said volumes). It is thus the velocity of this mixture what concerns us. Notice that sediment must
move at a different (lower) speed than the driving flow; in fact, we can say that v = vsC + vf (1−C), where vs and
vf are the sediment and fluid velocities, respectively. Second, remember that a vector field has a non-zero divergence
only at sources or sinks. In this case, the bed acts as a source of sediment. However, we treat the bed as a boundary
of our fluid domain, and so the divergence-free condition continues to apply to v.
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coefficient Ds = (Dsx, Dsy, Dsz). Then the above equation can be written in extended form as32:

∂C

∂t
+ us

∂C

∂x
+ vs

∂C

∂y
+ ws

∂C

∂z
=

∂

∂x

(
Dsx

∂C

∂x

)
+

∂

∂y

(
Dsy

∂C

∂y

)
+

∂

∂z

(
Dsz

∂C

∂z

)
. (12)

Solution to the above equation, with corresponding boundary and initial conditions, tells us what
the sediment concentration, C(x, y, z, t), will be at any point (in the 3D domain) and time. But,
frequently, we are interested in flows that can be treated, at least approximately, as steady and
uniform, such that C varies only in the vertical direction. This means ∂C/∂t = ∂C/∂x = ∂C/∂y =
0, such that we are left with ∂C/∂z = dC/dz and

ws
dC

dz
=

d

dz

(
Dsz

dC

dz

)
. (13)

Now, in the steady-state condition invoked, we can replace ws with the fall velocity (wf ) discussed
above; in particular, we have ws = −wf (negative sign due to downwards motion). Since wf does
not depend on z, we can integrate both sides to arrive at33

Dsz
dC

dz
= −wfC. (14)

The above equation tells us that in steady, one-dimensional, uniform flow, sediment concentration
at a given point of the water column is being balanced by gravity (right-hand side) trying to
bring particles to the bed, and upward diffusion (left-hand side) which re-suspends the sediment34.
Naturally, we cannot know C(z) (i.e. solve the above differential equation) until we have an
expression for Dsz (note that wf is independent of z). And so we have another closure problem
– remember Reynolds stresses? This should not be surprising; after all, the sediment diffusion
coefficient does relate to turbulence: it is turbulence that suspends sediment (counteracting the
influence of gravity). In fact, as we will see below, some similarities exist. There are several
models for the diffusion coefficient Dsz (as with the eddie viscosity), none of which is perfect for all
applications. For example, we may assume that

i) Dsz is some constant,
Dsz = D0; (15)

ii) Dsz varies linearly with the distance from the bed, z, as35

Dsz = κu∗z, (16)

where κ (≈ 0.4) is the von Kármán constant and u∗ is the sear velocity; or that

32IMPORTANT: A couple of points. First, we are strictly talking here about the time-average concentration
〈C〉, but we avoid the angle brackets to keep the notation clearer. Second, also strictly speaking we are dealing here
with dispersion rather than diffusion (in a molecular sense); in other words, the diffusion-like behaviour is due to
the underlying flow patterns (mainly turbulence). However, because both diffusion and dispersion are modelled by
the same type of equation, you will find in the literature that these terms are often used interchangeably. I keep to
this convention in these notes.

33We will assume that dC/dz → 0 when C → 0, which gets rid of the integration constant.
34Show that Dsz must be non-negative (tip: think about the expected behaviour of the C(z) profile).
35This is not completely arbitrary, it connects with the Prandtl eddie model for turbulence discussed previously in

Open Channel Hydrodynamics.
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iii) Dsz follows a parabolic profile throughout the water depth, h, according to

Dsz = κu∗z
(

1− z

h

)
. (17)

Use of the three models for Dsz (constant, linear and parabolic)36 in (14), yields, respectively, the
following expressions37 for C(z):

C(z) = C0 exp

(
−
wf
D0

z

)
, (18)

C(z) = C0

(
z

z0

)− wf
κu∗

, (19)

and

C(z) = C0

[(
z

h− z

)(
h− z0

z0

)]− wf
κu∗

, (20)

where C0 = C(z = z0) is some reference concentration at a reference height z0 (typically, the
near-bed concentration is used). The exponent wf/(κu∗) is called the Rouse number, after
the 20th century American fluid dynamicist Hunter Rouse, and is clearly of great importance in
determining the concentration distribution. For instance, large values of the Rouse number imply a
predominance of wf over u∗ (recall, u∗ relates to turbulence), and thus weak or near-bed suspension
will take place. The third expression above for C(z) is called the Rouse profile.

The above expressions for the suspended concentration distribution, C(z), are by no means unique.
There exist many more, and analytical solutions for this problem continue to be published today.
They are, however, typically employed in engineering practice. Fig. 7 illustrates a comparison
between the profiles obtained by using linear and parabolic (Rouse profile) approximations for Dsz,
for a Rouse number of 0.671 (high concentration, often known as ‘wash load’).

Finally, if one needs to know the total load of sediment being mobilised in suspension by the flow
(per unit channel width), qs, all that needs to be done is integrate:

qs =

∫ h

z0

C(z)us(z)dz. (21)

If theoretical expressions for C(z) and us(z) are employed (for the latter, for instance, the law
of the wall could be invoked, at least for the near-bed region and at low concentrations38), the
above expression may have an analytical solution. Alternatively, there exist empirical formulae
for the suspended or total load based on parameters more easily obtained in field or numerical
simulations, such as the depth-average flow (streamwise) velocity.

36Sketch the three models, showing Dsz(z)/(κu∗h) in the x−axis and z/h in the y−axis.
37Obtain each of these expressions for C(z).
38The low-concentration assumption is very important, for at high concentrations you can no longer assume that

the sediment does not influence the local hydrodynamics (it is no longer a passive scalar), and very different theories
apply (e.g. treating the hyper-concentrated water-sediment mixture as a non-Newtonian fluid).
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Figure 7: Comparison between concentration profiles predicted for linear (blue line) and parabolic (red line)
approximations for Dsz, for a Rouse number of 0.671. Screenshot from Matlab app provided as additional
material.

5 The bed evolution (Exner) equation

Up to this point, we have followed grains of sediment from the moment they start moving from
their resting position on the bed, to the stage where they are transported by the flow, either as
bedload or as suspended load. But we have ignored the fact that by taking sediment from the bed,
the bed shape or morphology must change. The dynamics of a changing bed morphology are
called morphodynamics. The importance of understanding the temporal evolution of the bed
morphology will become clearer in the next section and coming parts of the module, but you may
guess a few problems where this may be a crucial aspect: siltation of dams, dredging of rivers, scour
around bridge piers, coastal erosion, etc. In any case, here we will focus on the general equation
governing the bed change.

When the grains of sediment originally resting on the bed are picked up by the flow, they are
transported by the latter until they eventually resettle onto the bed somewhere downstream. The
important thing here is that the grains go somewhere, and so are obviously not lost. In other words,
bed sediment mass is conserved. Therefore, to track the evolution of the bed level, it makes sense
to apply conservation of sediment mass to a control volume located at the bed level. Focusing on
the 1D case for simplicity, it is clear that sediment may enter the control volume either by bedload
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from the upstream end or be deposited from above; and sediment may leave the volume via bedload
at the downstream end or by being eroded and suspended into the column of water39. Any deficit
or surplus between the sediment entering and leaving the control volume should be reflected in the
local change of bed level zb according to:

∂zb
∂t

+
1

(1− εp)
∂qb
∂x

= es, (22)

where εp is the bed porosity, typically taken as constant40; and es is the net flux of deposited
sediment, i.e. the difference between the rate of sediment settling and the rate of sediment eroded
and suspended into the column of fluid. The term ∂qb/∂x represents the deficit or surplus that
may exist between the bedload sediment leaving and entering our control volume. Morpological
changes of engineering importance are usually dominated by bedload transport, such that the right-
hand side of the above equation is often neglected41. Generalising to bedload in the two horizontal
directions, we have

∂zb
∂t

= − 1

(1− εp)
∇·qb, (23)

where qb = (qbx, qby) is the bedload vector composed of bedload rates qbx and qby in the x and y
directions, respectively. Thus, the above equation, also known as Exner equation, may also be
written as

∂zb
∂t

= − 1

(1− εp)

(
∂qbx
∂x

+
∂qby
∂y

)
. (24)

Exner equation predicts the local change in bed elevation due to any local gradient in the bedload
transport. And this is all we need to predict the overall evolution of any open channel bed subject
to bedload, provided, of course, that we also know the local hydrodynamics (which dictate qb; see
§7). The next section will show how this equation may be used to predict the evolution of bedforms.

6 Bedforms

If you have seen an exposed river bed, or a beach at low tide, you will have noticed that alluvial
beds are typically not flat, but rather rich in certain wavy features (see fig. 8). These features are
collectively known as bedforms (or due to their wavy/rhythmic patterns, also as sandwaves),
and are ubiquitous to natural streams. Bedforms, their classification and mechanics, are not only
fascinating from a scientific perspective, but are also very relevant in engineering practice. For
instance, they effectively increase the flow resistance, they migrate and may interact with engineered
structures (e.g. a bridge pier) and, for large forms, the local depth variations may affect navigation.

39Sketch this.
40Note that the term (1 − εp) may also be replaced by the bed sediment concentration or packing fraction,

but the porosity is conventionally preferred (a porosity = 1 means a concentration = 0, and vice versa). Usually,
0.45 < εp < 0.75, with εp = 0.64 being a good estimate for spherical grains.

41This also obeys historical reasons. Western science on open channel morphodynamics originally developed mainly
in countries with rivers presenting relatively coarse sediment (Switzerland, UK, USA, Canada), which are dominated
by bedload. But this is not true for other important rivers in the world, such as the suspension-dominated Yellow
river in China, where many advances on the topic have also been made. Some Chinese researchers in the topic even
go as far as to say that bedload is nothing but a limit case of suspended load. There is of course some arbitrariness
to the definition of bedload and suspended load.
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We will now look at some important aspects of bedforms and employ Exner equation to understand
some of their mechanics.

Figure 8: Bedforms generated during an experiment with sand bed at Boldrewood Campus, Univ. of
Southampton. Flow was from right to left.

Sandwaves vary greatly in size, as shown in fig. 9. At the small-scale extreme of the spectrum,
there are ripples, which typically have wavelengths and heights of centimetres and are associated
with fine sediment (D < 1 mm). On the other side of the spectrum, dunes can have wavelengths of
tens of metres and heights of metres. Interestingly, ripples may commonly be found superimposed
in dunes. Various studies have related, via empirical expressions, the geometric characteristics of
sandwaves (wavelength and height42) to relevant hydraulic parameters, such as depth and velocity.
As usual, we will not focus here on said empirical expressions, but will rather highlight some
conceptual aspects. For instance, it is worth remarking that the shape of bedforms induces flow
separation in the downstream face (or lee side), where a large gradient in the bed slope is found,
which results in a pressure drop at the lee side of the form (see fig. 9). In other words, (form) drag is
being induced. This drag ‘felt’ by the sandwave is the same in magnitude that the flow experiences
in the opposite direction. And thus, additional resistance (to that experienced by friction with
an otherwise flat bed) is created. As you may expect, quantifying the enhanced resistance due
to bedforms is not something that can be done with purely theoretical considerations, and so
empiricism comes to the rescue once more. Many authors have proposed expressions to estimate,
for instance, the enhanced roughness (or Manning’s coefficient) due to the prescence of bedforms
as a function of the latter’s geometric characteristics. A bedform-induced shear stress τ ′′ may then
be added to the ‘normal’ bed shear stress τ ′ that would be computed for a flat bed to yield an
effective bed shear stress τb; i.e.

τb = τ ′ + τ ′′. (25)

The genesis of sandwaves also depends on the flow velocity, as one may expect. Ripples, for
instance, are associated with flow velocities near the threshold of motion. Increase the flow velocity,
and ripples give way to dunes (which sometimes have ripples superimposed). Increase the velocity
further and the dunes will be washed away, leading to a flat bed. But for still higher flow velocities,
another interesting type of bedform appears: antidunes. To see why antidunes are interesting,
first we need to look at another aspect of sandwaves, namely, their migration.

42In fig. 8, identify the wavelength and height of the bedforms shown.
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Figure 9: Different types of bedforms or sandwaves. [Taken from Jansen, P. P. Principles of River Engineer-
ing: the Non-Tidal Alluvial River. Delftse Uitgevers Maatschappij, 1994.]

For a given flow, the loose sediment in the bed gives rise to the forms discussed above, until a ‘stable’
shape is achieved (such as that shown in figs. 8 and 11). However, said beforms are not ‘frozen’
in space, but rather migrate. To understand how, it is convenient to consider the idealised 2D
scenario43 depicted in fig. 10, where an initial bedform is subject to a steady, subcritical current of
fixed discharge and free surface level44 (not water depth). It is clear that the flow (depth-averaged)
velocity, U , increases towards the top of the form, and then decreases again in the lee side until
attaining again its initial upstream value. Assume that U is large enough to mobilise sediment
everywhere in the channel. Then, at an intuitive level, you can see that in parts of the bed where
the fluid accelerates (the upstream or stoss side) net erosion will take place, whereas in those parts
where the flow deaccelerates (the lee side), a tendency towards deposition will dominate. (We
will get back to this problem later with a more quantitative, Exner-based, approach.) Since the
flow upstream is steady, the result is a net streamwise migration, which is confirmed by field and
laboratory observations of dunes (as shown in fig. 11). Just as with water waves, the velocity at
which the sandwaves migrate is called their celerity, or migration speed. The celerity of real
bedforms depends on several factors and typically requires use of empirical formulae and in situ
measurements (or may be based purely on the latter) – a dune in an estuary, for instance, may
migrate some 0.5 m in one day. However, for certain (very) ideal conditions45, theoretical treatment

43Idealised in the sense that every real scenario will be 3D in nature, although several problems can be treated as
2D to highlight important aspects of the phenomenon.

44This is called the rigid-lid assumption, and it is an idealisation because, as you may remember from intro-
ductory hydraulics, for subcritical flow a depression in the surface level is expected to accompany a local increase in
bed elevation (the step problem). However, the rigid-lid assumption is a good approximation for small values of the
Froude number and small bedform height relative to the water depth (as you can see for yourself in fig. 10).

45Such as a small bedform in a wide rectangular channel, where bedload transport may be expressed as qb = aUb,

18



Figure 10: Initial state of an erodible hump subject to a subcritical, steady current (from right to left).
Green dashed line illustrates the rigid-lid assumption. Experiment carried out at Boldrewood Campus, UoS.

permits derivation of the following estimate for the celerity of a bedform, cb:

cb =
αbaU b

h

1

1− F 2
, (26)

where α, a and b are some empirical positive constants (see footnote 45), h is the water depth, and
F ≡ U/

√
gh is the Froude number. Of course, this equation is not defined for F = 1.

Now, let us analyse the above expression. As expected, the celerity or migration speed increases
with the ‘intensity’ of the sediment transport rate (the term aU b), and decreases with increasing
water depth (because, for a given discharge per unit width, q, the velocity decreases with increasing
depth: U = q/h). But the Froude number deserves especial attention. For F < 1, cb increases with
F and is always positive – this is in line with our intuitive findings above regarding the migration
of a bedform in subcritical flow. But F > 1 (supercritical flow) predicts a negative value of cb, and
thus... upstream migration?! Counter-intuitive as it may sound, this does occur in nature, and
is the reason why antidunes are so called (and why I told you they were interesting)46. In fact,
there is a special case of beforms in between downstream migrating dunes and upstream migrating
antidunes, namely, standing waves, which do not migrate at all.

Finally, let us return to Exner equation, which should reproduce the aspects of bedforms we have
discussed so far. Consider again the problem depicted in fig. 10. Recall: the free surface is fixed
at a constant value η (measured form a given datum), discharge per unit width is also constant
and equal to q0, the bed surface is given by zb(x, t), and for simplicity, bedload transport may be
estimated as qb = aU b. Since the water depth is h(x, t) = η − zb(x, t), it follows that the depth-
average velocity is given by U(x, t) = q0/(η − zb(x, t)). With this in mind, let us rewrite Exner

where a and b are some positive constants (usually, b = 3 is assumed).
46Explain with words, aided by sketches, how antidunes are formed from a qualitative viewpoint (tip: pay attention

to the free surface profile for a supercritical flow).
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Figure 11: Evolution of the hump shown in fig. 10 after certain time. The form has evolved and migrated
downstream. Flow is from right to left.

equation as47

∂zb
∂t

+
1

(1− εp)
∂qb
∂x

=
∂zb
∂t

+
1

(1− εp)
∂qb
∂zb

∂zb
∂x

=
∂zb
∂t

+

[
1

(1− εp)
abqb0 (η − zb)−(b+1)

]
︸ ︷︷ ︸

λ(zb)

∂zb
∂x

= 0. (27)

The equation above has the form of the advection equation (compare with eq. 11 with diffusion
equal to zero), where the advection speed λ is the term in square brackets, which depends on
several constants (a, b, q0, εp and η) and zb (this is therefore a nonlinear advection problem); i.e.
λ = λ(zb). This means that points in different locations on the bed surface zb(x, t) will be advected
at different speeds λ, depending on the height zb from the datum, with points near the crest of
the bedform being advected at faster rates than points near the base48. We can solve the above
equation either analytically or numerically; in any case, the evolved bed will show the well-known
shape of a dune (mild slope of upstream face and steep lee side), despite the fact that the original
form was symmetrical (compare figs. 10 and 11). This is further verified in fig. 12, where the above
equation has been solved analytically for the case of a perfectly symmetrical initial bedform.

Returning once more to Exner equation in the form of

∂zb
∂t

= − 1

(1− εp)
∂qb(U)

∂x
, (28)

47I am taking some mathematical liberties here to make a point. What I mean by these ‘liberties’ is that, for
example, the term ∂qb/∂zb has no direct physical meaning. But I need this to write the equation as an advection
one, for reasons that are about to become clear.

48Think about this. It makes sense because for the assumptions adopted, a larger value of zb means a smaller value
of h (recall, h = η − zb, and η is constant), and thus a larger U(= q0/h); and qb ∝ Ub.
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Figure 12: Evolution of an originally symmetrical bedform after 3 hrs of being subject to a steady current
from left to right (analytical solution to eq. 27). The bedform changes shape while migrating downstream.
The following parameters have been employed: η = 10 m; q0 = 10 m2/s; qb = 0.01U3 m2/s; and ε = 0.64.
Matlab code provided as additional material.

clearly shows that the bed will locally suffer erosion (accretion) if the bedload gradient is positive
(negative). The bedload gradient is positive (negative) in the upstream (dowsntream) face of the
bedform, where ∂U/∂x is positive (negative). This also shows quite neatly why bedform migration
should be expected. The interesting behaviour of antidunes is also replicated by solving Exner
equation, but since antidunes only occur in supercritical flows, the rigid-lid assumption referred to
above (i.e. constant η) is no longer valid and Exner must be solved numerically alongside the flow
hydrodynamics (e.g. by solving the Shallow Water Equations or the cross-section-mean equations),
as discussed next.

7 Morphodynamic modelling

As we said at the beginning of these notes, the evolution of the bed morphology and the local
hydrodynamics are intimately linked. The bed changes according to local sediment transport pat-
terns, which in turn depend on the local flow velocity, which is in turn influenced by the bed (which
is a boundary). Therefore, if we are interested in predicting (modelling) the morphodynamics of
a given site (be it a river, an estuary or a coast), we must also model the hydrodynamics. For
instance, if you are asked to predict the evolution of a navigation channel one year after it has been
dredged, you should:

(i) obtain adequate field data (bathymetry and other boundary conditions, such as expected flow
rates, tides, etc.); then

(ii) select a suitable hydrodynamic model for your problem (perhaps based on the Shallow Water
Equations);

(iii) based on the simulated hydrodynamics, predict sediment transport patterns (after having
selected –or developed/calibrated– a suitable sediment transport formula);

(iv) see how these sediment transport processes will affect the evolution of the bed (i.e. solve
Exner equation); and, finally

(v) return to point (ii) (i.e. solve the hydrodynamics again) and carry on until you have reached
the one-year prediction you were requested.
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This process forms the basis of most existing morphodynamic models49, and is illustrated in fig.
13.

Figure 13: General structure of a typical morphodynamic model.

An illustration of the results from a morphodynamic model can be seen in fig. 14. Here, we
want to know how the channel entrance to a harbour (initial bathymetry) will respond to a given
combination of river discharge, tides and waves (hence, the hydrodynamic model will need to
account for the influence of short-period water waves). The result of the hydrodynamic model is a
time-varying depth-averaged 2D velocity vector field. This field is in turn employed to calculate a
sediment transport field, whose gradient leads to instantaneous, local bed changes (Exner equation).
The updated bed is then fed back into the hydrodynamic model, and the cycles repeats. Fig.
14C shows the erosion/deposition patterns (i.e. the difference between the final and the initial
bathymetry) after a 50 days simulation.

We will conclude these notes with a couple of important remarks about morphodynamic models.
First of all, it should be clear to you that the role played by the empirical expression you invoke
to calculate sediment transport rates is crucial (this is the link between Exner equation and the
hydrodynamic model). This is not to be understated. Research has shown that, just by changing
the selection of empirical sediment transport formula (keeping everything else the same), the un-
certainty in, say, the predicted formation time of certain bed patters can be in the order of tens
of years! A real-world example of why this matters is provided by the recent, pioneering project
of the Sand Engine in The Netherlands: a mega beach nourishment scheme designed to ‘build
with nature’50. Engineers and researchers investigating the potential useful life of this nourishment
scheme (given of course by its morphodynamic evolution) disagree by tens of years, with significant
implications for the associated costs: do we need to carry out another huge beach nourishment in
20 or 50 years? (I will let you speculate how such an uncertainty translates into costs in a 70 mil-
lion Euro project) Another complicating factor of morphodynamic modelling is the large mismatch

49This is not the only possible way of predicting the morphodynamics of an open channel, but it is by far the
most common. Other approaches include two-phase (water-sediment) and multi-layer (e.g. bed-bedload-suspension)
models, which are however beyond the scope of this module.

50This is a prominent example of the so-called ‘nature-based engineering’ paradigm shift; learn more at https:

//dezandmotor.nl/en/.
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Figure 14: Morphodynamic modelling of the channel entrance to Littlehampton harbour, West Sussex. A)
Satellite image of the site. B) Initial digital elevation map or bathymetry, which serves as initial condition
for the model. C) Difference between final (after a 50-days simulation) and initial bathymetry, showing ero-
sion/deposition patterns; pay attention to the shoal bank formation in the channel, which affects navigation
into the harbour. (This is was part of a previous Group Design Project.)

between the time scales associated with the hydrodynamics and the morphodynamics, which are
different by several orders of magnitude. In other words, the time-evolution of flow characteristics
(depth, velocity) is typically measured in seconds, but morphological changes are usually only per-
ceivable after hours or days. This mismatch continues to represent challenges to the engineering
and scientific community, especially when interested in predicting the long-term evolution of the
bed morphology.
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