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Abstract

Analysis of rotodynamic pumps is based on the so-called ‘Euler turbomachinery equations’
(formulated by Leonhard Euler in the eighteen century), which relate the desired flow discharge
and head to the pump’s design parameters such as dimensions and torque. Here, we derive said
equations from Reynolds transport theorem and conservation of the fluid’s angular momentum,
prior to studying the case of an idealised centrifugal pump.

1 The angular momentum equation

A basic theorem in Fluid Dynamics is the Reynolds Transport Theorem. This theorem formalises
the intuition that the rate of change of a given fluid property (e.g. mass, momentum, energy, or
the like) in a system must be equal to the rate of change of said quantity within the control volume
that encloses the system minus(plus) the net flux into(out) of the surface boundary of the control
volume. In other words, consider a system S enclosed by a fixed control volume, CV, which is in
turn defined by its boundary surface, CS. The rate of change of any quantity, B, within the system
(B|S) is given by

dB

dt

∣∣∣∣
S

=

∫
CV

∂

∂t
(βρ) dV︸ ︷︷ ︸

rate of change within CV

+

∫
CS
βρ(V · n) dA︸ ︷︷ ︸

flux into(out) of CS

, (1)

where β ≡ dB/dm is the intensive value of the amount B per unit mass in any small part of the
fluid1; ρ is the fluid density; V is the fluid velocity vector; and n is defined as the outward normal
unit vector everywhere on the control surface2.

In introductory hydraulics, we often deal with steady problems (i.e. ∂(...)/∂t = 0) and incompress-
ible flow (i.e. ρ constant), which leads to a simpler version of (1); namely

dB

dt

∣∣∣∣
S

= ρ

∫
CS
β(V · n) dA. (2)

For instance, if we know that the mass of a (steady, incompressible) system must be conserved,
we are saying that B = m and (dB/dt)|S = 0, from which the continuity equation you have
used so far follows3. When it comes to the study of rotodynamic pumps, though, an important

1For example, if the property of interest is linear momentum, B = mV, then β ≡ dB/dm = V (i.e. β would
simply be the velocity of the mass m).

2i.e. a vector of length 1 that is normal to the control surface at every point and –importantly– is always directed
outwards.

3[Ex. 1] In other words, we would obtain A1V1 = A2V2. Try to obtain this yourself by considering that the system

S is a segment of a pipe with downstream (upstream) cross-section A1 (A2).
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property (B) to be analysed is naturally the angular momentum. For a rotating rigid body,
angular momentum is defined as the body’s moment of inertia (about the rotational axis) times its
angular velocity. However, for fluids the situation is slightly more complex due to the fact that,
unlike solid bodies, fluids are typically composed of a collection of non-rigid (fluid) particles moving
at different velocities. Therefore, we must use a more general expression for angular momentum,
which we achieve by integrating over elemental masses, dm, composing our system. If O is the
point about which moments are desired, our angular momentum about O, Ho (a vector quantity),
is given by

Ho =

∫
S
(r×V) dm, (3)

where r is the position vector from O to the elemental mass dm. According to our definition of β,
the amount of angular momentum per unit mass is

β =
dHo

dm
= r×V. (4)

The above equation can then be used in (2) (hence, steady, incompressible flow is assumed) to
obtain an expression for the rate of change of angular momentum within the system S; namely

dHo

dt

∣∣∣∣
S

= ρ

∫
CS

(r×V) (V · n) dA. (5)

But we know that the rate of change of angular momentum of a system must be equal to the net
moment exerted by the surroundings about the axis of rotation,

∑
Mo (i.e. the ‘rotational’ version

of Newton’s second law). Therefore,
dHo

dt
=
∑

Mo. (6)

Putting eqs. (5) and (6) together, we obtain an expression to study rotodynamic machines (handling
steady, incompressible flow); namely:∑

Mo =
dHo

dt
= ρ

∫
CS

(r×V) (V · n) dA. (7)

Furthermore, in many engineering applications, it is safe to assume that the flow crosses the bound-
aries of the control surface (CS) only at certain inlets and outlets where the flow is virtually per-
pendicular to the cross section and uniform through it (e.g. the entrance from a large reservoir into
a pipe), such that (V · n)dA = ±V dA, where V is the magnitude of V, and the sign will depend
on whether V and n point in the same (positive) or opposite (negative) direction. Under such
conditions, the surface integral above reduces to a sum of positive (outlets) and negative (inlet)
product terms for each cross section4, yielding5∑

Mo =
∑

(r×V)outṁout −
∑

(r×V)inṁin, (8)

4Can you see why this convention in signs?
5[Ex. 2] Arrive at this expression.
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where ṁ = ρAV is the mass flow through area A (only if V is uniform throughout A and perpen-
dicular to it).

In the next section we will show how the above equation can be used to study problems concerned
with turbomachines, and will derive the basic formulae employed when dealing with centrifugal
pumps.

2 The ideal centrifugal pump

Consider the simplified centrifugal pump sketched6 in Fig. 1. Water enters axially through the
eye (left) and then passes through the pump blades, which rotate at an angular speed ω. Due to
energy being transferred from the pump to the fluid, the latter’s velocity changes from V1, when
entering the impeller, to V2, when exiting (its pressure also changes from p1 to p2). For this flow
to be maintained, a torque, To, must be applied to the blades (about the axis of rotation O). Let
us find an expression for this torque as a function of other relevant variables such as angular speed
and fluid volumetric flow rate (discharge).

Figure 1: Schematic of a simplified centrifugal pump (from White 2005)

An important step when solving problems by means of control volumes is, naturally, the selection
of a convenient control volume! In this case, we find the annular region between sections 1 and
2 to provide us with such convenience (see fig. 2). We can assume the flow to be steady and
incompressible such that eq. (8) can be utilised. Furthermore, recalling that pressure acts normal
to any surface, it is clear that pressure forces do not contribute to the sum of moments about O,
Mo, since they act radially through it. Therefore, only the fluid (tangential) velocity will contribute
to
∑

Mo, which, invoking (8), takes the form∑
Mo = To =

∑
(r2 ×V2)ṁout −

∑
(r1 ×V1)ṁin, (9)

6Add to fig. 2 all the variables shown in fig. 1.
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Figure 2: 3D render of the sketch shown in fig. 1. The control volume of interest (the annular region between
sections 1 and 2 in fig. 1) is shown, along with the flow (blue arrows).

where r1 and r2 are the position vectors to sections defined by circles of radii r1 and r2, respectively,
as shown in figure 1.

Moreover, steady flow continuity tells us that7

ṁin = ṁout = ṁ = ρQ, (10)

where Q is the volumetric discharge. The cross products in (9) are both clockwise about O and
dependent on the fluid tangential velocities; namely

r1 ×V1 = r1Vt1k̂ (11a)

r2 ×V2 = r2Vt2k̂, (11b)

where the unit vector k̂ points in the positive z-direction (see figure) and thus implies ‘clockwise’
direction in the convention adopted.

Returning to (9), we find the formula we are looking for, which relates the desired flow discharge
to the required input torque; namely:

To = ρQ(r2Vt2 − r1Vt1)k̂, (12)

or, dropping the vector notation for simplicity (but recalling that the torque must naturally be
applied in the direction of the angular velocity, ω)

To = ρQ(r2Vt2 − r1Vt1). (13)

7[Ex. 3] Show that ṁ = ρVn12πr1b = ρVn22πr2b (refer to the figure for definition of variables).
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The above expression is known as Euler’s turbine formula. It shows, for example, that the
required torque is proportional (linearly) both to the flow discharge, Q, and to the pump’s geometry
(given by its radii r1 and r2). What else can you tell about this formula?

The power delivered by the pump to the fluid is given by the product P = ωTo, and the ideal energy
head gained by the fluid (energy per unit weight) is Hi = P/(ρgQ) (g is gravitational acceleration).
This allows us to obtain the Euler turbomachinery equations (the aim of these notes); namely:

T = ρQ(r2Vt2 − r1Vt1) (14a)

P = ωT = ρQ(u2Vt2 − u1Vt1) (14b)

Hi =
P

ρgQ
=

1

g
(u2Vt2 − u1Vt1), (14c)

where ui = ωri (i = 1,2) are the rotor-tip speeds8 . These expressions do not account for energy
losses, which is corrected by means of an efficiency coefficient. We will cover this in class.

Reference:
White, F.M. 2005. Fluid Mechanics. Fifth Edition. Singapore: Mc Graw Hill.

8[Ex. 4] In an ideal world, for a pump of radii r1 and r2 (with r2 > r1) rotating at velocity ω, what would be the

maximum head you could possibly get, and what assumptions would underpin that value?

5


	The angular momentum equation
	The ideal centrifugal pump

